

QUARTERLY GROUNDWATER MONITORING THE SCONE WASTE LANDFILL

THE SCONE WASTE LANDFILL

Noblet Road Scone NSW 2337

Upper Hunter Shire Council

DLH1186/0450054_H001985

July 2018

PROJECT NAME Scone Waste Landfill Groundwater Monitoring

PROJECT ID DLH1186/0450054

DOCUMENT CONTROL NUMBER H001985

PREPARED FOR Upper Hunter Shire Council

APPROVED FOR RELEASE BY Stephen Challinor

DISCLAIMER AND COPYRIGHTThis report is subject to the copyright statement located at

www.erm.com

DOCUMENT CO	ONTROL			
VERSION	DATE	COMMENT	PREPARED BY	REVIEWED BY
H001985	26.07.2018		Michael Mercer/ Kathrine Skeen	Stephen Challinor

ERM Services Australia Pty Ltd: ABN 80 601 661 634

ADELAIDE

5 Peel Street Adelaide, SA, 5000 Ph: +61 8 8332 0960 Fax: +61 7 3844 5858

BRISBANE

Level 4, 201 Leichardt Street Brisbane, Qld 4000 Ph: +61 7 3004 6400

MELBOURNE

Level 10, 224 Queen Street Melbourne, Vic 3000 Ph: +61 3 9036 2637 Fax: +61 2 9870 0999

PERTH

Level 18, 140 St Georges Terrace Perth, WA 6000 Ph: +61 8 9481 4961

NEWCASTLE

Level 4, 45 Watt St Newcastle NSW 2300 Ph: +61 2 4933 0001

MELBOURNE

Level 6, 99 King Street Melbourne, Vic 3000 Ph: +61 3 9036 2637 Fax: +61 2 9870 0999

SYDNEY

Unit 11 Macquarie Link, 227 Lane Cove Rd Macquarie Park, NSW 2113 Ph: +61 2 9476 1765

Fax: +61 2 9476 1557

309 Kent Street

North Sydney, NSW 2000 Ph: +61 2 9870 0900 Fax: +61 2 9870 0999

LIMITATIONS

This report was prepared in accordance with the scope of work outlined within this report and subject to the applicable cost, time and other constraints. ERM performed the services in a manner consistent with the normal level of care and expertise exercised by members of the environmental profession. ERM makes no warranty concerning the suitability of the site for any purpose or the permissibility of any use, development or re-development of the site. Except as otherwise stated, ERM's assessment is limited strictly to identifying specified environmental conditions associated with the subject site and does not evaluate structural conditions of any buildings on the subject site. Lack of identification in the report of any hazardous or toxic materials on the subject site should not be interpreted as a guarantee that such materials do not exist on the site.

This assessment is based on site inspection conducted by ERM personnel, sampling and analyses described in the report, and information provided by Downer Group ('Downer' or 'the client') or other people with knowledge of the site conditions. All conclusions and recommendations made in the report are the professional opinions of the ERM personnel involved with the project and, while normal checking of the accuracy of data has been conducted, ERM assumes no responsibility or liability for errors in data obtained from such sources, regulatory agencies or any other external sources, nor from occurrences outside the scope of this project.

ERM is not engaged in environmental consulting and reporting for the purpose of advertising, sales promoting, or endorsement of any client interests, including raising investment capital, recommending investment decisions, or other publicity or investment purposes.

ERM PREPARED THIS REPORT FOR THE SOLE AND EXCLUSIVE BENEFIT AND USE OF DOWNER. NOTWITHSTANDING DELIVERY OF THIS REPORT BY ERM OR DOWNER TO ANY THIRD PARTY, UNLESS OTHERWISE EXPRESSLY AGREED, ANY COPY OF THIS REPORT PROVIDED TO A THIRD PARTY IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY, WITHOUT THE RIGHT TO RELY AND ERM DISCLAIMS ALL LIABILITY TO SUCH THIRD PARTY TO THE EXTENT PERMITTED BY LAW. ANY USE OF THIS REPORT BY A THIRD PARTY IS DEEMED TO CONSTITUTE ACCEPTANCE OF THIS LIMITATION.

ABBREVIATIONS

ANZECC Australian and New Zealand Environment and Conservation Council

ARMCANZ Agriculture and Resource Management Council of Australia and New Zealand

DEC Department of Environment and Conservation (NSW)

EC Electrical Conductivity

EPA Environment Protection Authority (NSW)

ERM Environmental Resources Management (formerly DLA Environmental Services)

NEPCNational Environment Protection CouncilNEPMNational Environment Protection MeasureNHMRCNational Health and Medical Research CouncilNRMMCNatural Resource Management Ministerial Council

NSW New South Wales

OCP Organochlorine Pesticides
TOC Total Organic Carbon

TABLE OF CONTENTS

1.0	INTRODUCTION	1
1.1	General	1
1.2	Scope of Works	1
2.0	MONITORING PARAMETERS	
3.0	SAMPLING METHODOLOGY	3
3.1	Groundwater Sampling	3
4.0	RESULTS	4
5.0	DISCUSSION	9
6.0	CONCLUSIONS	11
7.0	REFERENCES	12

FIGURES

Figure 1 Site Location Regional
Figure 2 Site Location Local

Figure 3 Site Layout with Sample Locations

ATTACHMENTS

Attachment 1 NATA Certified Analytical Results

Attachment 2 YSI Water Quality Meter Calibration Certificate

Attachment 3 Data Log

Attachment 4 Groundwater Field Data Sheets

1.0 INTRODUCTION

1.1 General

ERM Services Australia (ERM) was engaged by Upper Hunter Shire Council (the Client) to conduct annual and quarterly surface and groundwater monitoring of the following area:

Scone Waste Facility Area

Noblet Road Scone NSW 2337 (the Site).

Refer to **Figure 1**: *Site Location Regional* and **Figure 2**: *Site Location Local*.

The Groundwater Monitoring Report provides an overview of the current condition of groundwater at the Site in relation to the Site Criteria and satisfies the groundwater monitoring requirements of the New South Wales (NSW) Environmental Protection Authority (EPA) Environmental Protection Licence 5863.

The report has been prepared utilising information obtained as part of the investigation process, from previous monitoring reports and from experience, knowledge, and current industry practice in the monitoring of similar sites. It is anticipated that quarterly monitoring will be undertaken in April, July and October with annual reporting undertaken in the January reporting period.

Quarterly groundwater monitoring was undertaken on Thursday 12th July 2018 by staff of ERM.

1.2 Scope of Works

The scope of work provided by Upper Hunter Shire Council indicates that annual and quarterly groundwater monitoring is required at the following groundwater sampling locations:

- MWA;
- MWB;
- MWC;
- MWD (landfill leachate monitoring well); and
- MWE.

Refer to Figure 3: Site Layout with Sample Locations.

2.0 MONITORING PARAMETERS

The following sample analysis parameters and monitoring frequency were provided by Upper Hunter Shire Council for the groundwater wells. Threshold Criteria are primarily sourced from *Australian and New Zealand Guidelines for Fresh and Marine Water Quality* (ANZECC, 2000), *National Environment Protection (Assessment of Site Contamination) Amendment Measure 2013 (No. 1)* ('NEPM', NEPC 2013), and the *Australian Drinking Water Guidelines* (NHMRC / NRMMC, 2011).

Table 2a: Analytes, Threshold Criteria and Monitoring Frequency for Groundwater Monitoring
Wells

		Threshold Criteria	
Analytes	Units	NEPM 2013 / ANZECC	Monitoring Frequency
		2000 Fresh Water 95%	
Calcium	mg/L	NA	Quarterly
Alkalinity (total)	mg/L	NA	Quarterly
Chloride	mg/L	NA	Quarterly
Fluoride	mg/L	NA	Quarterly
Iron	mg/L	0.3 ^B	Quarterly
Magnesium	mg/L	NA	Quarterly
Manganese	mg/L	1.9 ^A	Quarterly
Organochlorine pesticides (OCP)	mg/L	0.00001 ^c	Quarterly
Potassium	mg/L	410 ^D	Quarterly
рН	рН	6.5 – 8	Quarterly
Sodium	mg/L	NA	Quarterly
Ammonia	mg/L	0.9 ^A	Quarterly
Nitrate	mg/L	0.7	Quarterly
Sulfate	mg/L	NA	Quarterly
Total organic carbon (TOC)	mg/L	4	Quarterly
Total phenolics	mg/L	0.32	Quarterly
Electrical conductivity (EC) A – Trigger value may not protect key species from	μS/cm	NA	Quarterly

A – Trigger value may not protect key species from chronic toxicity, refer to ANZECC & ARMCANZ (2000) for further guidance

B - Interim working level, in absence of reliable trigger value

C - Trigger value for DDT used in absence of trigger value for total OCP

D – Poor (acceptable) drinking water criteria, World Health Organisation Guidelines for Drinking-water Quality 2009

3.0 SAMPLING METHODOLOGY

3.1 Groundwater Sampling

Groundwater samples were collected from well locations MWA, MWB, MWC, MWD and MWE. Purging and sampling of monitoring wells was conducted in accordance with the NEPM (NEPC, 2013) and the *Guidelines for the Assessment and Management of Groundwater Contamination* (NSW DEC, 2007).

Wells were purged using a disposable bailer whilst being measured for physiochemical stability to indicate the flow of formation water. Physiochemical properties were measured at regular intervals following the purging of each equipment volume using an InSitu Water Quality Meter. Stable conditions were indicated by monitoring the following parameters for three consecutive readings of:

- pH ± 0.1 unit;
- Electrical Conductivity ± 5%;
- Temperature ± 0.20;
- Redox Potential ± 10%; and
- Dissolved Oxygen ± 10%.

Samples were obtained using a dedicated disposable bailer which was changed between each monitoring well to minimise the potential for cross contamination. Sampling equipment was cleaned prior to sampling and between sample locations to prevent cross contamination. The cleaning procedure included:

- Washing and brush scrub with phosphate free laboratory grade detergent;
- Rinsing with water of a potable quality; and
- Rinsing with deionised water.

Groundwater samples were collected into laboratory prepared and supplied sample containers for specific analytes (i.e. into a combination of plastic unpreserved, plastic preserved, glass amber unpreserved and preserved glass vials). Samples were collected and filled into the respective sample containers so no head space remained in the sample container, with no loss of any preservation agents, where present. Groundwater samples collected for metals analysis were filtered through 0.45um filter. Samples were placed immediately into a chilled cooler to minimise the likelihood for the loss of potential volatile components.

It is opinion of ERM that decontamination procedures were appropriate during groundwater sampling and no cross contamination can be inferred.

4.0 RESULTS

All wells were sampled during the April 2018 sampling event, results are detailed below.

Refer to **Table 4a – Table 4e** for a tabulated summary of the laboratory results.

Refer to Figure 3 for sampling locations.

Table 4a - Groundwater Results Comparison April 2018

Sampling Parameter	Units	Threshold Criteria (mg/L)	MWA Oct 2017	MWA Jan 2018	MWA Apr 2018	MWA July 2018
Calcium	mg/L	NA	600	590	640	590
Alkalinity (total)	mg/L	NA	470	490	490	480
Chloride	mg/L	NA	7600	7200	7100	7300
Fluoride	mg/L	NA	0.14	0.13	0.13	0.14
Iron	mg/L	0.3 ^B	0.034	ND	ND	0.17
Magnesium	mg/L	NA	1100	1200	1200	1100
Manganese	mg/L	1.9 ^A	0.014	0.010	0.02	0.01
ОСР	mg/L	0.00001 ^c	ND	ND	ND	ND
Potassium	mg/L	410 ^D	4.9	4.9	4.4	4.4
рН	рН	6.5 – 8	6.6	7.0	6.9	6.7
Sodium	mg/L	NA	2000	2000	2100	1900
Ammonia	mg/L	0.9 ^A	0.42	0.12	0.16	0.16
Nitrate	mg/L	0.7	0.41	ND	ND	ND
Sulfate	mg/L	NA	43	40	41	42
тос	mg/L	4.0	5.0	5.6	3.6	2.3
Total phenolics	mg/L	0.32	ND	ND	0.02	ND
EC	μS/cm	NA	20000	20000	21000	19000

Samples highlighted in **Bold** exceed threshold criteria

ND = No Detection above Laboratory LOR

A – Trigger value may not protect key species from chronic toxicity, refer to ANZECC & ARMCANZ (2000) for further guidance

B - Interim working level, in absence of reliable trigger value

C - Trigger value for DDT used in absence of trigger value for total OCP

D – Poor (acceptable) drinking water criteria, World Health Organisation Guidelines for Drinking-water Quality 2009

NA – Not Applicable

Table 4b - Groundwater Results Comparison April 2018

Sampling Parameter	Units	Threshold Criteria (mg/L)	MWB Oct 2017	MWB Jan 2018	MWB Apr 2018	MWB July 2018
Calcium	mg/L	NA	610	600	650	590
Alkalinity (total)	mg/L	NA	380	420	390	400
Chloride	mg/L	NA	6000	5400	5700	5600
Fluoride	mg/L	NA	0.26	0.24	0.28	0.26
Iron	mg/L	0.3 ^B	0.005	ND	ND	0.02
Magnesium	mg/L	NA	790	810	810	720
Manganese	mg/L	1.9 ^A	0.009	0.005	0.01	0.01
ОСР	mg/L	0.00001 ^c	ND	ND	ND	ND
Potassium	mg/L	410 ^D	4.1	4.1 3.6		3.6
рН	рН	6.5 – 8	6.7	7.0	7.2	6.9
Sodium	mg/L	NA	1600	1700	1700	1500
Ammonia	mg/L	0.9 ^A	0.09	0.09	0.09	0.08
Nitrate	mg/L	0.7	0.75	ND	0.46	ND
Sulfate	mg/L	NA	70	66	70	74
тос	mg/L	4.0	6.3	6.2	4.8	3.5
Total phenolics	mg/L	0.32	ND	ND	ND	ND
EC	μS/cm	NA	16000	16000	16000	15000

ND = No Detection above Laboratory LOR

A – Trigger value may not protect key species from chronic toxicity, refer to ANZECC & ARMCANZ (2000) for further guidance

B - Interim working level, in absence of reliable trigger value

C - Trigger value for DDT used in absence of trigger value for total OCP

D – Poor (acceptable) drinking water criteria, World Health Organisation Guidelines for Drinking-water Quality 2009 NA – Not Applicable

Table 4c – Groundwater Results Comparison April 2018

Sampling Parameter	Units	Threshold Criteria (mg/L)	MWC Oct 2017	MWC Jan 2018	MWC Apr 2018	MWC July 2018
Calcium	mg/L	NA	35	200	270	350
Alkalinity (total)	mg/L	NA	720	580	550	590
Chloride	mg/L	NA	500	2400	3200	4200
Fluoride	mg/L	NA	0.41	0.26	0.31	0.2
Iron	mg/L	0.3 ^B	ND	ND	ND	0.019
Magnesium	mg/L	NA	73	330	440	490
Manganese	mg/L	1.9 ^A	4.6	12	15	9.1
ОСР	mg/L	0.00001 ^c	ND	ND	ND	ND
Potassium	mg/L	410 ^D	0.9	1.8	1.8	2.6
рН	рН	6.5 – 8	7.1	6.9	6.9	6.7
Sodium	mg/L	NA	490	1100	1400	1400
Ammonia	mg/L	0.9 ^A	0.41	0.16	0.22	0.1
Nitrate	mg/L	0.7	ND	1.7	2.5	1
Sulfate	mg/L	NA	110	110	130	140
тос	mg/L	4.0	19	12	9.0	6.5
Total phenolics	mg/L	0.32	ND	ND	ND	ND
EC	μS/cm	NA	2400	3000	8700	12000

ND = No Detection above Laboratory LOR

NA – Not Applicable

A – Trigger value may not protect key species from chronic toxicity, refer to ANZECC & ARMCANZ (2000) for further guidance

B - Interim working level, in absence of reliable trigger value

C - Trigger value for DDT used in absence of trigger value for total OCP

D – Poor (acceptable) drinking water criteria, World Health Organisation Guidelines for Drinking-water Quality 2009

Table 4d – Groundwater Results Comparison April 2018

Sampling Parameter	Units	Threshold Criteria (mg/L)	MWD (leachate) Oct 2017	MWD (leachate) Jan 2018	MWD (leachate) Apr 2018	MWD (leachate) July 2018
Calcium	mg/L	NA	190	160	120	96
Alkalinity (total)	mg/L	NA	2500	2400	2500	2500
Chloride	mg/L	NA	3700	3100	3600	3300
Fluoride	mg/L	NA	0.32	0.30	0.34	0.28
Iron	mg/L	0.3 ^B	0.3	1.1	1.1	2
Magnesium	mg/L	NA	260	270	290	220
Manganese	mg/L	1.9 ^A	0.28	0.29	0.18	0.18
ОСР	mg/L	0.00001 ^c	ND	ND	ND	ND
Potassium	mg/L	410 ^D	210	220	200	210
рН	рН	6.5 – 8	7.2	7.7	7.7	7.6
Sodium	mg/L	NA	1800	1900	1900	1700
Ammonia	mg/L	0.9 ^A	350	330	320	330
Nitrate	mg/L	0.7	ND	ND	ND	ND
Sulfate	mg/L	NA	240	93	110	81
тос	mg/L	4.0	320	340	340	320
Total phenolics	mg/L	0.32	0.03	0.03	0.05	0.065
EC	μS/cm	NA	13000	13000	14000	13000

ND = No Detection above Laboratory LOR

As MWD is within the perched landfill leachate water table, the Threshold Criteria are only applicable as indicators of general water quality for comparison to the wells surrounding the landfill. Exceedances of the Threshold Criteria for MWD are expected and do not indicate contamination is leaving the Site.

A – Trigger value may not protect key species from chronic toxicity, refer to ANZECC & ARMCANZ (2000) for further guidance

B - Interim working level, in absence of reliable trigger value

C - Trigger value for DDT used in absence of trigger value for total OCP

D – Poor (acceptable) drinking water criteria, World Health Organisation Guidelines for Drinking-water Quality 2009

NA – Not Applicable

Table 4e - Groundwater Results Comparison April 2018

Sampling Parameter	Units	Threshold Criteria (mg/L)	MWE Oct 2017	MWE Jan 2018	MWE Apr 2018	MWE July 2018
Calcium	mg/L	NA	56	56	59	56
Alkalinity (total)	mg/L	NA	1100	1200	1200	1200
Chloride	mg/L	NA	310	280	280	270
Fluoride	mg/L	NA	0.51	0.47	0.56	0.51
Iron	mg/L	0.3 ^B	0.015	0.01	ND	0.02
Magnesium	mg/L	NA	55	55	53	53
Manganese	mg/L	1.9 ^A	0.055	0.24	0.14	0.16
ОСР	mg/L	0.00001 ^c	ND	ND	ND	ND
Potassium	mg/L	410 ^D	1.4	1.6	1.2	1.3
рН	рН	6.5 – 8	7.4	7.4	7.4	7.4
Sodium	mg/L	NA	520	520	550	530
Ammonia	mg/L	0.9 ^A	0.38	0.04	0.07	0.09
Nitrate	mg/L	0.7	ND	ND	ND	ND
Sulfate	mg/L	NA	110	91	85	92
Total Organic	mg/L	4.0	17	15	7.9	6
Total phenolics	mg/L	0.32	ND	ND	ND	ND
EC	μS/cm	NA	3000	3000	3200	2900

ND = No Detection above Laboratory LOR

A – Trigger value may not protect key species from chronic toxicity, refer to ANZECC & ARMCANZ (2000) for further guidance

B - Interim working level, in absence of reliable trigger value

C - Trigger value for DDT used in absence of trigger value for total OCP

D – Poor (acceptable) drinking water criteria, World Health Organisation Guidelines for Drinking-water Quality 2009 NA – Not Applicable

5.0 DISCUSSION

Due to the sites topography, the inferred hydraulic gradient is generally to the west. Wells MWA, MWB and MWC are located down-hydraulic gradient of the landfill. Well MWE is considered to be up-hydraulic gradient of the landfill. Well MWD is located within the perched landfill water table, being the leachate within the landfill.

The water sampled from well MWD is landfill leachate, as such the Threshold Criteria is not applicable. MWD is to be used as a general indicator of water quality within the landfill for comparison to the external monitoring wells.

The following is a summary of the results of the July 2018 sampling event in relation to the Threshold Criteria. The following exceedances of the Threshold Criteria occurred:

- Nitrate in MWC exceeded the Threshold Criteria (0.7 mg/L) with a concentration of 1.0 mg/L, a decrease from the 2.5 mg/L reported in April 2018. There has been no nitrate detected in leachate well MWD which suggests that the landfill is not the source of the nitrate. The nitrate may be migrating onto the Site through groundwater from the adjoining farmland.
- Manganese in MWC exceeded the Threshold Criteria (1.9 mg/L) with a concentration of 9.1 mg/L, a decrease from the 15.0 mg/L reported in April 2018. Manganese concentrations in leachate well MWD have been consistently below the Threshold Criteria which suggests that the landfill is not the source of the Manganese.
- Total Organic Carbon (TOC) exceeded the Threshold Criteria (4 mg/L) in two monitoring wells. TOC concentrations in MWC decreased to 6.5 mg/L from the 9.0 mg/L reported in April 2018. A decreased in TOC concentration was also reported in MWE (6 mg/L from 7.9 mg/L in April 2018). It should be noted that the Threshold Criteria used for TOC is intended for drinking water. Due to the extent of the exceedances and the intention of the Threshold Criteria used, these exceedances are regarded as minor. The TOC concentration in MWE, located up-hydraulic gradient, indicates that TOC is likely to be elevated in the local groundwater.

All other analytes in all other wells reported detections which were within the Threshold Criteria.

The following notable changes occurred within the groundwater analytes in landfill leachate well MWD:

- Ammonia in MWD exceeded the Threshold Criteria (0.9mg/L) with a concentration of 320 mg/L. This well has reported similar concentrations in the past three monitoring events; and,

- Iron in MWD exceeded the Threshold Criteria (0.3mg/L) with a concentration of 2mg/L, an increase from the 1.1 mg/L reported in April 2018.

Refer to **Attachment 3** – Data Log.

The data will be viewed on a trending basis as more results become available.

6.0 CONCLUSIONS

The results of laboratory analysis of the samples collected from the Scone Waste Landfill during the July 2018 quarterly sampling event confirmed several exceedances of the Threshold Criteria in the wells external to the landfill. The Threshold Criteria are sourced from the ANZECC 2000 Guidelines for Fresh Water 95% level of protection, NEPM 2013 and Australian Drinking Water Guidelines 2011.

The following analytes exceeded the Threshold Criteria during the July 2018 sampling event: nitrate, manganese and TOC in MWC, and TOC in MWE. There were no other exceedances of the Threshold Criteria in wells external to the landfill.

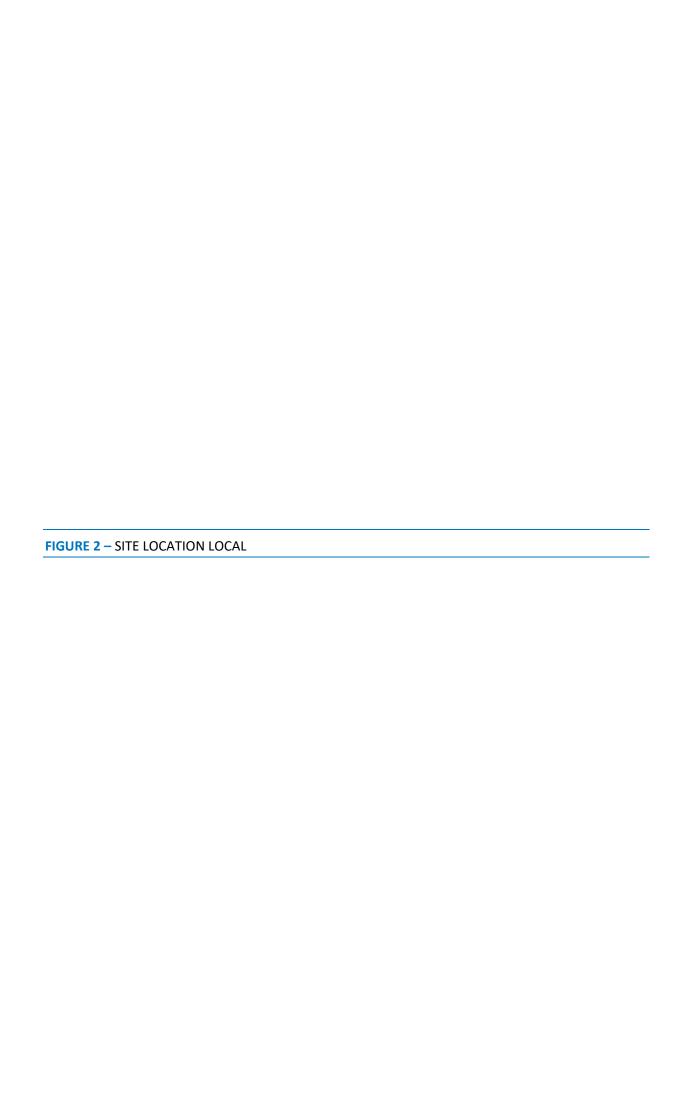
Some exceedances have been explained by local conditions or regarded as minor due to the criteria being Australian Drinking Water Guidelines. Historical results of these analytes over time may indicate a seasonal fluctuation of regional groundwater conditions. Exceeding concentrations of iron, ammonia and TOC were reported in MWD. With the exception of TOC no exceedances of these analytes were reported in any wells surrounding the landfill indicating it is unlikely that releases of landfill leachate into the local groundwater is occurring. Exceedances of TOC in wells surrounding the landfill are expected to be attributed to background concentrations.

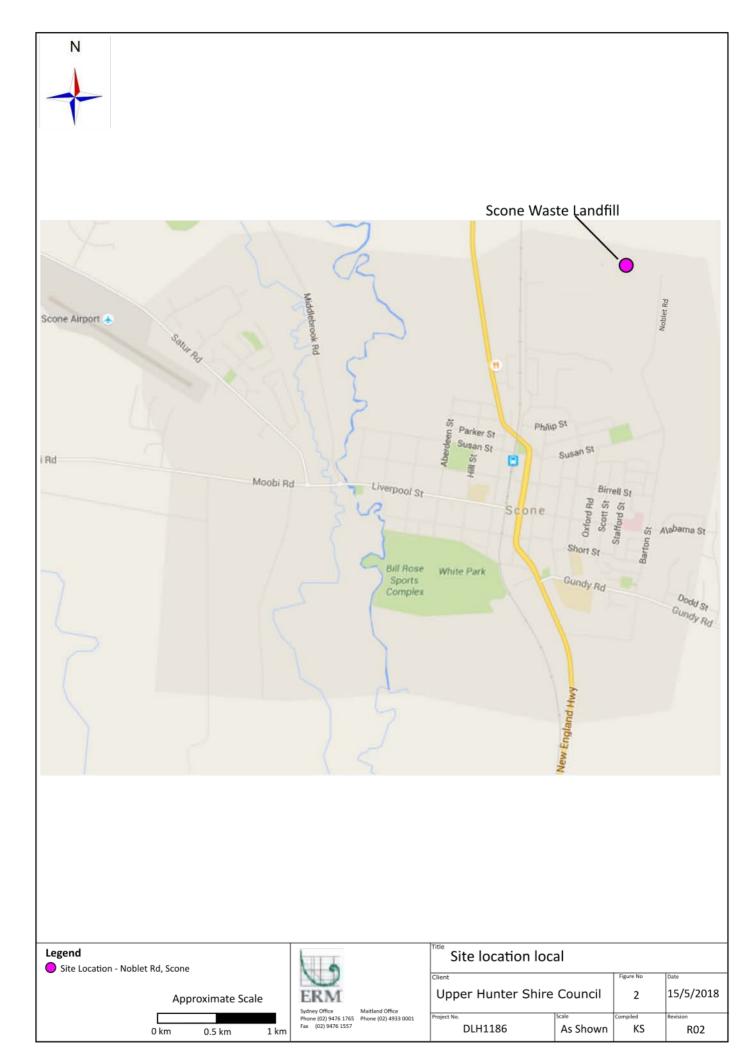
In conclusions, the elevated concentrations of nitrate, manganese and TOC in the monitoring wells surrounding the landfill do not necessarily indicate the concentrations are due to the landfill leachate, future testing and trending of data will allow for appropriate comparisons. Further monitoring may reveal the source and extent of elevated concentrations of particular analytes. As more data becomes available, it will become clearer which analytes are consistently elevated and may allow for determining the source of contamination.

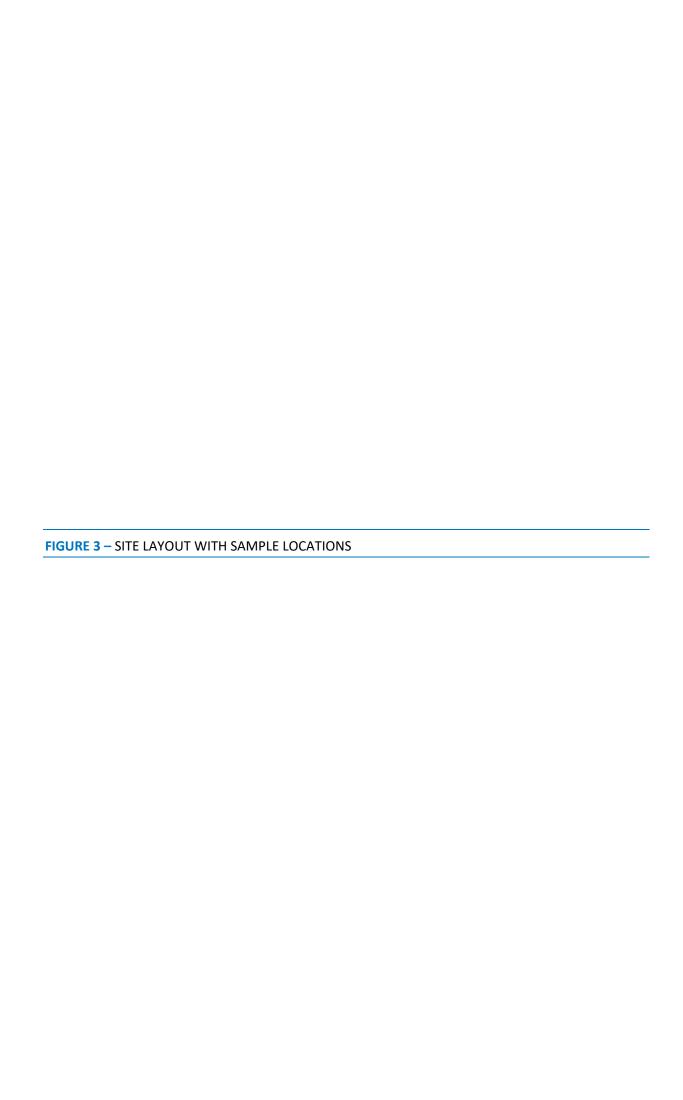
The next water sampling event will be the quarterly monitoring event undertaken in October 2018.

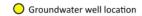
7.0 REFERENCES

ANZECC/ARMCANZ (2000). *Australian Water Quality Guidelines for Fresh and Marine Water Quality.* Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand, Canberra, October 2000.


NEPC (1999). *National Environment Protection (Assessment of Site Contamination) Amendment Measure 2013 (No.1)*. National Environment Protection Council.


NHMRC / NRMMC (2011). Australian Drinking Water Guidelines Paper 6 National Water Quality Management Strategy. National Health and Medical Research Council, National Resource Management Ministerial Council.


NSW DEC (2007). Contaminated Sites: Guidelines for the Assessment and Management of Groundwater Contamination. New South Wales Department of Environment and Conservation.



Approximate Scale
Om 50m 100m

Maitland Office Phone (02) 4933 0001

Site layout with sample locations							
Upper Hunter Shire Council	Council Project No. Date Date T5/5/2018						
	As Shown	Compiled KS	Revision RO2				

ANALYTICAL REPORT

CLIENT DETAILS -

LABORATORY DETAILS

Laboratory

Date Reported

Stephen Challinor Contact

ERM SERVICES AUSTRALIA PTY LTD Client

Level 4, 45 Watt St Address Newcastle

NSW 2300

0409 223 465 Telephone Facsimile 61 2 98700999

Email stephen.challinor@erm.com

DLH1186-0450054 Project Order Number (Not specified)

5 Samples

Huong Crawford Manager

SGS Alexandria Environmental

Address Unit 16, 33 Maddox St

Alexandria NSW 2015

+61 2 8594 0400 Telephone Facsimile

+61 2 8594 0499

Email au.environmental.sydney@sgs.com

20/7/2018

SGS Reference SE181445 R0 13/7/2018 Date Received

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

Ion Chromatography - The Limit of Reporting (LOR) has been raised for NO3-N due to high conductivity of the sample requiring dilution.

SIGNATORIES

Dong Liang

Metals/Inorganics Team Leader

Kamrul Ahsan

Senior Chemist

Ly Kim Ha

Organic Section Head

kmln

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC

Alexandria NSW 2015 Alexandria NSW 2015 Australia Australia

t +61 2 8594 0400 f+61 2 8594 0499

www.sgs.com.au

OC Pesticides in Water [AN420] Tested: 16/7/2018

			MWA	MWB	MWC	MWD	MWE
			IVIVVA	INIAAD	WIVVC	MINAR	IVIVVE
			WATER	WATER	WATER	WATER	WATER
PARAMETER	UOM	LOR	12/7/2018 SE181445.001	12/7/2018 SE181445.002	12/7/2018 SE181445.003	12/7/2018 SE181445.004	12/7/2018 SE181445.005
Hexachlorobenzene (HCB)	μg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha BHC	μg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Lindane (gamma BHC)	μg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	μg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	μg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta BHC	μg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Delta BHC	μg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor epoxide	μg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDE	μg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Endosulfan	μg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Gamma Chlordane	μg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Chlordane	μg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
trans-Nonachlor	μg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDE	μg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	μg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	μg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDD	μg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDT	μg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta Endosulfan	μg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDD	μg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDT	μg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan sulphate	μg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin aldehyde	μg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	μg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin ketone	μg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Isodrin	μg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Mirex	μg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1

20/07/2018 Page 2 of 14

SE181445 R0

Total Phenolics in Water [AN289] Tested: 18/7/2018

			MWA	MWB	MWC	MWD	MWE
			WATER	WATER	WATER	WATER	WATER
							-
				12/7/2018	12/7/2018	12/7/2018	12/7/2018
PARAMETER	UOM	LOR	SE181445.001	SE181445.002	SE181445.003	SE181445.004	SE181445.005
Total Phenols	mg/L	0.01	<0.01	<0.01	<0.01	0.05	<0.01

20/07/2018 Page 3 of 14

SE181445 R0

Forms of Carbon [AN190] Tested: 18/7/2018

			MWA	MWB	MWC	MWD	MWE
			WATER	WATER	WATER	WATER	WATER
							-
				12/7/2018	12/7/2018	12/7/2018	12/7/2018
PARAMETER	UOM	LOR	SE181445.001	SE181445.002	SE181445.003	SE181445.004	SE181445.005
Total Organic Carbon as NPOC	mg/L	0.2	2.3	3.5	6.5	320	6.0

20/07/2018 Page 4 of 14

SE181445 R0

Ammonia Nitrogen by Discrete Analyser (Aquakem) [AN291] Tested: 17/7/2018

			MWA	MWB	MWC	MWD	MWE
			WATER	WATER	WATER	WATER	WATER
				12/7/2018	12/7/2018	12/7/2018	12/7/2018
PARAMETER	UOM	LOR	SE181445.001	SE181445.002	SE181445.003	SE181445.004	SE181445.005
Ammonia Nitrogen, NH₃ as N	mg/L	0.01	0.16	0.08	0.09	330	0.09

20/07/2018 Page 5 of 14

SE181445 R0

Anions by Ion Chromatography in Water [AN245] Tested: 16/7/2018

			MWA	MWB	MWC	MWD	MWE
			WATER	WATER	WATER	 WATER	WATER
				12/7/2018	12/7/2018	12/7/2018	12/7/2018
PARAMETER	UOM	LOR	SE181445.001	SE181445.002	SE181445.003	SE181445.004	SE181445.005
Chloride	mg/L	1	7300	5600	4200	3300	270
Sulfate, SO4	mg/L	1	42	74	140	81	92
Fluoride	mg/L	0.1	0.14	0.26	0.23	0.28	0.51
Nitrate Nitrogen, NO3-N	mg/L	0.005	<0.050↑	<0.050↑	0.95	<0.050↑	<0.010↑

20/07/2018 Page 6 of 14

SE181445 R0

pH in water [AN101] Tested: 16/7/2018

			MWA	MWB	MWC	MWD	MWE
			WATER	WATER	WATER	WATER	WATER
				12/7/2018	12/7/2018	12/7/2018	12/7/2018
PARAMETER	UOM	LOR	SE181445.001	SE181445.002	SE181445.003	SE181445.004	SE181445.005
pH**	No unit	-	6.7	6.9	6.7	7.6	7.4

20/07/2018 Page 7 of 14

SE181445 R0

Conductivity and TDS by Calculation - Water [AN106] Tested: 16/7/2018

			MWA	MWB	MWC	MWD	MWE
			WATER	WATER	WATER	WATER	WATER
				12/7/2018	12/7/2018	12/7/2018	12/7/2018
PARAMETER	UOM	LOR	SE181445.001	SE181445.002	SE181445.003	SE181445.004	SE181445.005
Conductivity @ 25 C	μS/cm	2	19000	15000	12000	13000	2900
Total Dissolved Solids (by calculation)	mg/L	2	12000	9200	7400	8000	1700

20/07/2018 Page 8 of 14

SE181445 R0

Alkalinity [AN135] Tested: 16/7/2018

			MWA	MWB	MWC	MWD	MWE
			WATER	WATER	WATER	WATER	WATER
			- 12/7/2018	- 12/7/2018	- 12/7/2018	- 12/7/2018	- 12/7/2018
PARAMETER	UOM	LOR	SE181445.001	SE181445.002	SE181445.003	SE181445.004	SE181445.005
Bicarbonate Alkalinity as CaCO3	mg/L	5	480	400	590	2500	1200
Carbonate Alkalinity as CaCO3	mg/L	1	<1	<1	<1	<1	<1
Hydroxide Alkalinity as CaCO3	mg/L	5	<5	<5	<5	<5	<5
Phenolphthalein Alkalinity as CaCO3*	mg/L	5	<5	<5	<5	<5	<5

20/07/2018 Page 9 of 14

SE181445 R0

Acidity and Free CO2 [AN140] Tested: 18/7/2018

			MWA	MWB	MWC	MWD	MWE
			WATER	WATER	WATER	WATER	WATER
				12/7/2018	12/7/2018	12/7/2018	12/7/2018
PARAMETER	UOM	LOR	SE181445.001	SE181445.002	SE181445.003	SE181445.004	SE181445.005
Acidity to pH 8.3	mg CaCO3/L	5	200	130	190	290	87

20/07/2018 Page 10 of 14

SE181445 R0

Metals in Water (Dissolved) by ICPOES [AN320] Tested: 17/7/2018

			MWA	MWB	MWC	MWD	MWE
			WATER	WATER	WATER	WATER	WATER
			-	-	-	-	-
				12/7/2018	12/7/2018	12/7/2018	12/7/2018
PARAMETER	UOM	LOR	SE181445.001	SE181445.002	SE181445.003	SE181445.004	SE181445.005
Calcium, Ca	mg/L	0.1	590	590	350	96	56
Magnesium, Mg	mg/L	0.1	1100	720	490	220	53
Sodium, Na	mg/L	0.1	1900	1500	1400	1700	530
Potassium, K	mg/L	0.2	4.4	3.6	2.6	210	1.3

20/07/2018 Page 11 of 14

SE181445 R0

Trace Metals (Dissolved) in Water by ICPMS [AN318] Tested: 18/7/2018

			MWA	MWB	MWC	MWD	MWE
			WATER	WATER	WATER	WATER	WATER
				12/7/2018	12/7/2018	12/7/2018	12/7/2018
PARAMETER	UOM	LOR	SE181445.001	SE181445.002	SE181445.003	SE181445.004	SE181445.005
Iron, Fe	μg/L	5	170	21	19	2000	15
Manganese, Mn	μg/L	1	10	7	9100	180	160

20/07/2018 Page 12 of 14

Calculation

METHOD SUMMARY

SE181445 R0

METHOD	METHODOLOGY SUMMARY
AN020	Unpreserved water sample is filtered through a 0.45µm membrane filter and acidified with nitric acid similar to APHA3030B.
AN101	pH in Soil Sludge Sediment and Water: pH is measured electrometrically using a combination electrode (glass plus reference electrode) and is calibrated against 3 buffers purchased commercially. For soils, an extract with water is made at a ratio of 1:5 and the pH determined and reported on the extract. Reference APHA 4500-H+.
AN106	Conductivity and TDS by Calculation: Conductivity is measured by meter with temperature compensation and is calibrated against a standard solution of potassium chloride. Conductivity is generally reported as µmhos/cm or µS/cm @ 25°C. For soils, an extract with water is made at a ratio of 1:5 and the EC determined and reported on the extract, or calculated back to the as-received sample. Total Dissolved Salts can be estimated from conductivity using a conversion factor, which for natural waters, is in the range 0.55 to 0.75. SGS use 0.6. Reference APHA 2510 B.
AN106	Salinity may be calculated in terms of NaCl from the sample conductivity. This assumes all soluble salts present, measured by the conductivity, are present as NaCl.
AN135	Alkalinity (and forms of) by Titration: The sample is titrated with standard acid to pH 8.3 (P titre) and pH 4.5 (T titre) and permanent and/or total alkalinity calculated. The results are expressed as equivalents of calcium carbonate or recalculated as bicarbonate, carbonate and hydroxide. Reference APHA 2320. Internal Reference AN135
AN140	Acidity by Titration: The water sample is titrated with sodium hydroxide to designated pH end point. In a sample containing only carbon dioxide, bicarbonates and carbonates, titration to pH 8.3 at 25°C corresponds to stoichiometric neutralisation of carbonic acid to bicarbonate. Method reference APHA 2310 B.
AN190	TOC and DOC in Water: A homogenised micro portion of sample is injected into a heated reaction chamber packed with an oxidative catalyst that converts organic carbon to carbon dioxide. The CO2 is measured using a non-dispersive infrared detector. The process is fully automated in a commercially available analyser. If required a sugar value can be calculated from the TOC result. Reference APHA 5310 B.
AN190	Chemical oxygen demand can be calculated/estimated based on the O2/C relation as 2.67*NPOC (TOC). This is an estimate only and the factor will vary with sample matrix so results should be interpreted with caution.
AN245	Anions by Ion Chromatography: A water sample is injected into an eluent stream that passes through the ion chromatographic system where the anions of interest ie Br, Cl, NO2, NO3 and SO4 are separated on their relative affinities for the active sites on the column packing material. Changes to the conductivity and the UV-visible absorbance of the eluent enable identification and quantitation of the anions based on their retention time and peak height or area. APHA 4110 B
AN289	Analysis of Total Phenols in Soil Sediment and Water: Steam distillable phenols react with 4-aminoantipyrine at pH 7.9±0.1 in the presence of potassium ferricyanide to form a coloured antipyrine dye analysed by Discrete Analyser. Reference APHA 5530 B/D.
AN291	Ammonia in solution reacts with hypochlorite ions from Sodium Dichloroisocyanuate, and salicylate in the presence of Sodium Nitroprusside to form indophenol blue and measured at 670 nm by Discrete Analyser.
AN318	Determination of elements at trace level in waters by ICP-MS technique, in accordance with USEPA 6020A.
AN320	Metals by ICP-OES: Samples are preserved with 10% nitric acid for a wide range of metals and some non-metals. This solution is measured by Inductively Coupled Plasma. Solutions are aspirated into an argon plasma at 8000-10000K and emit characteristic energy or light as a result of electron transitions through unique energy levels. The emitted light is focused onto a diffraction grating where it is separated into components.
AN320	Photomultipliers or CCDs are used to measure the light intensity at specific wavelengths. This intensity is directly proportional to concentration. Corrections are required to compensate for spectral overlap between elements . Reference APHA 3120 B.
AN420	SVOC Compounds: Semi-Volatile Organic Compounds (SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).

20/07/2018 Page 13 of 14

If TDS is >500mg/L free or total carbon dioxide cannot be reported. APHA4500CO2 D.

Free and Total Carbon Dioxide may be calculated using alkalinity forms only when the samples TDS is <500mg/L.

OTNOTES SE181445 R0

FOOTNOTES

* NATA accreditation does not cover the performance of this service.

Indicative data, theoretical holding

time exceeded.

Not analysed.NVL Not validated.

IS Insufficient sample for analysis.

LNR Sample listed, but not received.

UOM Unit of Measure.
LOR Limit of Reporting.
↑↓ Raised/lowered Limit of

Reporting.

Samples analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here:

This document is issued by the Company under its General Conditions of Service accessible at www.sgs.com/en/Terms-and-Conditions.aspx.

Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This report must not be reproduced, except in full.

20/07/2018 Page 14 of 14

SGS			С	HAI	N C)F C	UST	r o D	Y 8	. AN	IAL	YSIS	s RI	ΞQU	JEST					Page1_ of1	
SGS Environmental Se	ervices	Compar	ny Nam	e:	ERM	Servic	es							Projec	t Name	e/No:	DLH	1186/04	45005	4	
Unit 16, 33 Maddox Str	reet	Address	3:		Level	4, 45 V	Watt St	reet, N	lewcas	stle NS	SW 23	00		Purcha	ase Or	rder No:					
Alexandria NSW 2015				_												uired By:					
Telephone No: (02) 85				2														5500 c	or 0419	914414	41 or 0409223456
Facsimile No: (02) 85	940499	Contact	Name	: _	Stephen Challinor								Facsin	nile:							
Email: au.samplereceipt.sy	Email: au.samplereceipt.sydney@sgs.com											Email	Result	s:					terOfficeMailbox@erm.com & om & Stephen.challinor@erm.com		
Client Sample ID	Date Sampled	Lab Sample ID	WATER	SOIL	PRESERVATIVE	NO OF CONTAINERS	WQ3	flouride	Chloride	Iron	manganese	organochlorine pesticides	ammonia	nitrate	Т0С	total phenolics		SGS EHS Alexandria Laboratory SE181445 COC			
MWA	12/7/18		X				х	х	Х	Х	Х	X	Х	X	Х	х			F	OE I Receiv	ved: 13 – Jul – 2018
MWB	12/7/18	1 2	X			\Box	Х	Х	Х	Х	Х	X	Х	х	Х	х			1 '		
MWC	12/7/18	3	X			\Box	X	Х	Х	Х	Х	Х	Х	Х	Х	х					
MWD	12/7/18	4	х				х	Х	Х	Х	Х	Х	Х	X	Х	Х					Leachate
MWE	12/7/18	5	х				Х	х	х	Х	х	X	Х	х	х	Х					
			1																		
			1																	_	
			1				_														
Relinquished By: Kath Skeen			/7/18									ed By		esse	5			Date/T		13/7	7/18 10:35
Relinquished By: Date/Time:									ved By	2					Date/T	2000					
Samples Intact: Yes/No			mpera								Sampl	e Coo	ler Se	aled:	Yes/	No		Labora	atory (Quota	ition No:
Comments: metals not field filtered																					

Calibration Report

Instrument Details:

Instrument Model:

Full Scale Pressure Range:

Serial Number:

Manufacture Date:

SMARTROLL™ MP

0 - 250 ft (0 - 76 m)

588881

2018-05-17

Calibration Details:

Calibration Result:

Calibration Date:

Nominal Range of Applied Temperature:

Temperature Accuracy Specification:

Nominal Range of Applied Pressure:

Pressure Accuracy Specification:

Conductivity Calibration:

Rugged Dissolved Oxygen Calibration:

Rugged Dissolved Oxygen Calibration.

pH/ORP Check:

PASS

2018-05-03 0 C to +50 C

+/-0.1 C from 0 C to +50 C

0 - 250 feet

+/-0.3% FS

Pass with a cell constant of 1.00.

Pass with an optical phase difference of +/- 2 degrees.

Pass with mV readings of +/- 5 mV.

Post-Calibration Check:

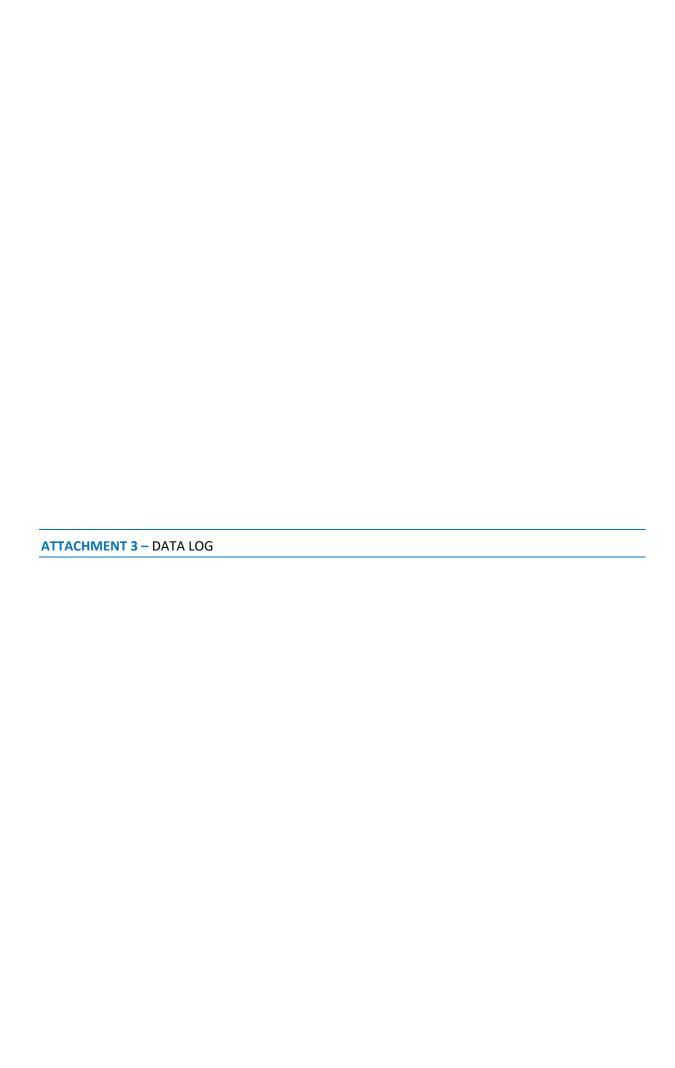
Parameter	Applied (PSI)	Reported (PSI)	Deviation (PSI)
Pressure	7	7.002	-0.002
Pressure	65	65.025	-0.025
Pressure	123	123.029	-0.029
Pressure	84.334	84.369	-0.035
Pressure	45.667	45.695	-0.028
Pressure	7	7.025	-0.025

Calibration Procedures and Equipment Used:

Automated calibration procedures used.

Calibrated in 900, 9000, & 90000 µS/cm conductivity standards.

Manu MENSOR Model 8100 Serial No 570135


Manu HART Model 1504 Serial No B42917

Manu Fluke Model 5665 Serial No B431401

Notes:

- 1. Standards used in the calibration are traceable to the National Institute of Standards and Technology.
- 2. This calibration report shall not be reproduced, except in full, without the written approval of In-Situ, Inc.
- 3. A calibration interval of 12 to 18 months is recommended.
- 4. The post-calibration data is collected at nominal +15C.
- 5. 1.0 PSI = 6.894757 kPa.

M

,	Threshold Criter	a NA	NA NA	NA	0.3	NA	1.9 0.00	00001 NA	6.5–8	NA	0.9 0	.7 NA	. 4	0.32	NA	NA	NA	0.015	0.024 (III) 0.013 (V)	0.055 (pH> 6.5)	NA	0.0002	0.09 0.001	4 0.001	NA	0.0034 0.0	0.00	8 0.26	0.95	0.18	0.08	NA NA	6500	0.05	0.03 0.00	0.00003	0.016 0.000
	Units	mg/L n	ng/L mg/l	L mg/L	mg/L	mg/L	mg/L m	ng/L mg/L	L pH	mg/L	mg/L m	g/L mg/	L mg/L	mg/L	πς/cm	mg/L Spio	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L r	mg/L mg/	L mg/L	mg/L	mg/L m	ng/L mg/	L mg/L	mg/L	mg/L	mg/L	mg/L mg/L	than e	mg/L e	mg/L mg	L mg/L	mg/L mg/
	Analytes	Calcium	Alkalinity Chloride	Fluoride	Iron	Magnesium	Mangane se Organochlori	pesticides (OC	됩	Sodium	Ammonia	Sulfate	fotal organic ca	Total phenoli	lectrical conduc (EC)	otal dissolved s	Biochemical oxy demand	Phosphate	Arsenic III &	Aluminium	Barium	Cadmium	Cobalt	Chromium V	Chromium (to	Lead	Mercury	ТРН	Benzene	Toluene	Ethylbenzen	total Tetrachloreth	,1,1-Trichloroet (TCA)	Tetrachloroeth (PCE)	1,2-Dichloroeth	PCBs	PAHS
ERM	Monitoring frequency	Quarterly	Quarterly Quarterly	Quarterly	Quarterly	Quarterly	Quarterly	Quarterly Quarterly	Quarterly	Quarterly	Quarterly	Quarterly	Quarterly	Quarterly	Quarterly	Yearly	Yearly	Yearly	Yearly	Yearly	Yearly	Yearly	Yearly Yearly	Yearly	Yearly	Yearly	Yearly Yearly	Yearly	Yearly	Yearly	Yearly	Yearly Yearly	Yearly 1	Yearly	Yearly	Yearly	Yearly Yearly
Monitoring Well Chemical Report	Comment																																CVCs/VOCC	s			
MWA 135493 6/10/201	_	620			ND					_	0.006 0.	_	_	_		-	_	N/A	N/A	_	N/A	-	N/A N/A		-	-		N/A	_		,	N/A N/A		_	N/A N/	A N/A	
MWB 135493 6/10/201 MWC 135493 6/10/201	_	650 62	370 6300 730 690					ND 2.6 ND 0.6		1900 670		.3 100 17 350	_	ND ND	16000 3900	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A		N/A N/A N/A N/A	_	N/A N/A		N/A N/A N/A N/A	_	N/A N/A	,		N/A N/A N/A N/A	_	N/A N/A	N/A N/	_	N/A N/A N/A N/A
MWD 135493 6/10/201 MWE 135493 6/10/201	_	150 2 75						ND 170 ND 1.7		_		D 66			11000 4000	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A			N/A N/A	_	N/A N/A		N/A N/A	_	N/A N/A			N/A N/A N/A N/A	_		N/A N/		N/A N/A N/A N/A
MWA SE148082 14/01/20:	16	630	430 7800) ND	ND	1100	0.01 N	ND 4	7	2200	0.2 0.	24 34	4.2	0.25	23000	16000	ND	0.22	0.001	ND	0.77	ND	ND ND	ND	ND	ND I	ND 0.00	9 ND	ND	ND	ND	ND ND	ND	ND	ND NI) ND	ND ND
MWB SE148082 14/01/20: MWC SE148082 14/01/20:		650 56	370 6000 750 630					ND 3.5 ND 0.9	_	1700 590		. 3 69	_	0.31 ND	18000 4300	15000 2400	ND ND	0.13	0.002	ND ND	0.62	_	ND ND 0.011 0.00				ND 0.01	ND ND	ND ND			ND ND		ND ND	ND NE		ND ND
MWD SE148082 14/01/20:	.6 leachate	170 1	200 1000	0.32	0.33	110	0.87 N	ND 110	7.3	690	110 N	D 18	140	0.47	5800	2500	48	0.13	0.017	ND	0.49	ND (0.004 ND	ND	0.031	ND I	ND 0.02	6 34	0.0028	0.0034	0.023	.0351 ND	ND	ND	ND 0.00	59 ND	
MWE SE148082 14/01/20: MWA 144481 7/04/201		700	750 850 460 7300					ND 1.1 ND 3.1		_		D 200 62 43	3	_	4600 18000	2200 N/A	ND N/A	0.25 N/A	0.005 N/A	ND N/A	0.048 N/A		0.002 ND N/A N/A	_			ND ND N/A N/A		ND N/A			ND ND N/A N/A		ND N/A	ND NE	_	ND ND N/A N/A
MWB 144481 7/04/201			380 6300					ND 2.6	_	_		.3 61	_	_	15000	N/A	N/A	N/A	N/A	N/A			N/A N/A				N/A N/A	_	N/A		_	N/A N/A			N/A N/		N/A N/A
MWC 144481 7/04/201 MWD 144481 7/04/201	-	290 160 2			_			ND 1.4 ND 180	_			.9 220 ID 35	_		9600 9600	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A			N/A N/A N/A N/A	_		_	N/A N/A N/A N/A		N/A N/A	_	_	N/A N/A N/A N/A		_	N/A N/	_	N/A N/A N/A N/A
MWE 144481 7/04/201 MWA SE154534 6/07/201	-		890 640 460 7900					ND 0.9 ND 3.7			_	01 160 36 35	_	ND 0.03	3200 21000	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A		N/A N/A	_	N/A N/A		N/A N/A	_	N/A N/A	_		N/A N/A N/A N/A	_		N/A N/	_	N/A N/A N/A N/A
MWB SE154534 6/07/201		650		_				ND 3.1		_		95 69	_	_	16000	N/A N/A	N/A N/A	N/A	N/A	N/A			N/A N/A	_			N/A N/A	_	N/A N/A			N/A N/A			N/A N/	_	N/A N/A
MWC SE154534 6/07/201 MWD SE154534 6/07/201		55 250 1	730 610 200 1000					ND 1.0 ND 120				15 220 ID 140	_	_	3300 5200	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	-	N/A N/A	_			N/A N/A	_	N/A N/A			N/A N/A N/A N/A			N/A N/	_	N/A N/A
MWE SE154534 6/07/201			970 470	_				ND 1.6		_		ID 110	_	_	3100	N/A	N/A	N/A	N/A	N/A	N/A		N/A N/A	_	N/A		N/A N/A	_	N/A			N/A N/A		N/A	N/A N/		N/A N/A
MWA SE157863 6/10/201 MWB SE157863 6/10/201	-	580 600			ND 0.006			ND 4.4 ND 3.6				50 37 .1 69				12000 10000	NA NA	NA NA	NA NA	NA NA	NA NA	10.1	NA NA	NA NA	1111	1111	NA NA		NA NA	1411	1011	NA NA		NA NA	NA NA	NA NA	NA NA
MWC SE157863 6/10/201	6	67	630 770	0.34	ND	120	5.600 N	ND 1.1	7.1	620	0.04 N	D 180	24	ND	3900	2400	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA I	NA NA	NA	NA	NA	NA	NA NA	NA	NA	NA NA	NA NA	NA NA
MWD SE157863 6/10/201 MWE SE157863 6/10/201		210 1 61	.600 1600 900 560	0.27		150 67		ND 140 ND 1.3	_			D 110	_	_		4700 2100	NA NA	NA NA	NA NA	NA NA			NA NA	_			NA NA	_	NA NA			NA NA	_		NA NA	NA NA	NA NA
MWA SE160904 12/1/201 MWB SE160904 12/1/201	_	600	460 8200 380 6300					ND 6 ND 5	_			13 38 59 70	5		19000 16000	14000 13000	ND ND	0.059	NA NA	ND ND	0.59 0.55		ND ND		0.001 0.001		ND 0.00 ND 0.00	_	ND ND			ND ND			ND NE	_	ND ND
MWC SE160904 12/1/201	_	44						ND 2		_		D 200	_	_	4200	2400		0.017	NA NA	0.006	0.05		0.013 ND	_			ND ND	_	ND ND			ND ND			ND NE	_	ND ND
MWD SE160904 12/1/201 MWE SE160904 12/1/201	_	260 2 70 1	_	_	1.100 0.021			ND 210 ND 1.8	_	_		D 330	_			6200 2100	170 ND	0.89	NA NA	0.014 ND	0.91		0.017 ND 0.004 0.00	_			ND 0.03 ND 0.01	5 3 3 ND	0.002 ND			0.042 ND ND ND			ND 0.00	_	0.017 ND ND
MWA SE164082 6/4/201	_	570		0.14	ND	1100		ND 3.1	6.8	2200	0.14 0.	24 39	6.4	0.16	21000	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A N/A	N/A	N/A	N/A N	N/A N/A	N/A	N/A	N/A	N/A	N/A N/A	N/A	N/A	N/A N/	A N/A	N/A N/A
MWB SE164082 6/4/201 MWC SE164082 6/4/201		580 34			ND ND				6.6 7.1		0.09 0 .				17000 2900	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	-	-	N/A N/A	_			N/A N/A	N/A N/A	N/A N/A	-	-	N/A N/A N/A N/A	_		N/A N/	_	N/A N/A N/A N/A
MWD SE164082 6/4/201	leachate	260 1	500 2200	0.28	0.920	190	0.780	ND 130	7.3	1200	210 N	ID 310	150	0.19	9400	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A N/A	N/A	N/A	N/A N	N/A N/A	N/A	N/A	N/A	N/A	N/A N/A	N/A	N/A	N/A N/	A N/A	N/A N/A
MWE SE164082 6/4/201 MWA SE167897 6/7/201	_	640		_	0.006 ND		71500	ND 0.9 ND 4.3	_	530 2200		_	20		3200 21000	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A		N/A N/A		N/A N/A		N/A N/A	_	N/A N/A			N/A N/A N/A N/A	_		N/A N/	_	N/A N/A N/A N/A
MWB SE167897 6/7/201	_	640	390 6000	0.26	ND	820	0.01 N	ND 4	7	1800	0.21 0.	83 75	8.2	ND	16000	N/A	N/A	N/A	N/A	N/A			N/A N/A				N/A N/A	_	N/A			N/A N/A			N/A N/	_	N/A N/A
MWC SE167897 6/7/201 MWD SE167897 6/7/201	_	26 150 2			0.008 1.6		_	ND 0.8 ND 180	_		0.33 0.0 310 N	005 90 ID 100	_		2400 12000	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	-	N/A N/A N/A N/A	_	N/A N/A		N/A N/A N/A N/A	_	N/A N/A	_	_	N/A N/A N/A N/A	_		N/A N/A		N/A N/A N/A N/A
MWE SE167897 6/7/201 MWA SE171359 6/10/201		60 1	200 340	0.5	0.077	65	0.14 N	ND 1.5 ND 4.9	7.5	570	0.1 N		26	ND	3100 20000	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A		N/A N/A	_	N/A N/A		N/A N/A	_	N/A N/A	_	N/A N/A	N/A N/A N/A N/A	_		N/A N/		N/A N/A N/A N/A
MWA SE171359 6/10/201 MWB SE171359 6/10/201	_	610	-	_				ND 4.9 ND 4.1				41 43 75 70	_	_	16000	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	_		N/A N/A	_			N/A N/A	_	N/A N/A	_		N/A N/A N/A N/A	_		N/A N/	_	
MWC SE171359 6/10/201 MWD SE171359 6/10/201			_	_					_		_		_									_		_				_			_					_	N/A N/A N/A N/A
MWE SE171359 6/10/201	7	190 2 56 1	100 310	0.51	0.015	55	0.55 N	ND 1.4	7.4	520	0.38 N	D 110	17	ND	3000	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A N/A	N/A	N/A	N/A N	N/A N/A	N/A	N/A	N/A	N/A	N/A N/A	N/A	N/A	N/A N/	A N/A	N/A N/A
MWA SE174394 12/1/201 MWB SE174394 12/1/201		590 600		0.13					7.0 7.0		0.12 N 0.09 N		_			18000 14000			0.001 0.001		0.62 0.54	_	ND ND	_				9 ND ND			_	ND ND				ND ND	
MWC SE174394 12/1/201	8	200	580 2400	0.26	ND	330	12 N	ND 1.8	6.9	1100	0.16 1	.7 110	12	<0.01	8700	5300	ND	ND	ND	0.01	0.27	ND (0.024 0.00	4 ND	ND	ND I	ND ND	ND	ND	ND	ND	ND ND	ND	ND	ND N) ND	ND ND
MWD SE174394 12/1/201 MWE SE174394 12/1/201		160 2 56 1		0.30	1.100 0.010				_	_	0.04 N	D 93	_			_		_	0.01	ND ND	1.10 0.04		0.032 ND 0.008 0.00				ND 0.01 ND ND		_			0.097 ND ND ND				ND ND	
MWA SE177839 10/4/201	8	640	490 7100	0.13	ND	1200	0.02 N	ND 4.4	6.9	2100	0.16 N	ID 41	3.6	0.02	21000	12000	N/A	N/A	N/A	N/A	N/A	N/A	N/A N/A	N/A	N/A	N/A N	N/A N/A	N/A	N/A	N/A	N/A	N/A N/A	N/A	N/A	N/A N/	A N/A	N/A N/A
MWB SE177839 10/4/201 MWC SE177839 10/4/201		650 270	390 5700 550 3200	0.28	_				7.2 6.9		0.09 0. 0.22 2				16000 11000			N/A N/A	N/A N/A	N/A N/A	N/A N/A		N/A N/A N/A N/A	_	N/A N/A			N/A N/A			N/A N/A		_		-	A N/A A N/A	N/A N/A N/A N/A
MWD SE177839 10/4/201	8 leachate	120 2	_		_	290			_		320.00 N	_	_		14000	8500 N/A	_	N/A	N/A	N/A	N/A		N/A N/A					N/A	_	N/A		-			N/A N/	_	
MWE SE177839 10/4/201 MWA SE181445 12/7/201			200 280 480 7300	0.56	_				7.4 6.7	_	0.07 N 0.16 N		_			_		N/A N/A	N/A N/A	N/A N/A	N/A N/A		N/A N/A			N/A N	N/A N/A	N/A	N/A			N/A N/A N/A N/A			N/A N/A	A N/A A N/A	
MWB SE181445 12/7/201 MWC SE181445 12/7/201		590 ·		0.26			_	_	_	_	0.08 N 0.09 0.		_			N/A N/A		N/A N/A	N/A N/A	N/A N/A			N/A N/A					N/A N/Δ				N/A N/A N/A N/A				A N/A	N/A N/A N/A N/A
MWD SE181445 12/7/201	8 leachate	96 2	500 3300	0.28	2	220	0.18 N	ND 210	7.6	1700	330 N	D 81	320	0.065	13000	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A N/A	N/A	N/A	N/A N	N/A N/A	N/A	N/A	N/A	N/A	N/A N/A	N/A	N/A	N/A N/	A N/A	N/A N/A
MWE SE181445 12/7/201	8	56 1	200 270	0.51	0.015	53	0.16 N	ND 1.3	7.4	530	0.09 N	D 92	6	ND	2900	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A N/A	N/A	N/A	N/A N	N/A N/A	N/A	N/A	N/A	N/A	N/A N/A	N/A	N/A	N/A N/	A N/A	N/A N/A
							*As MWD is	within the perc	ched landfill leach	hate water tal	ble, the Thresho	ld Criteria are	only applicat	le as indicator	s of general	water quality	for comparis	son to the we	ells surroundin	ng the landfill.	Exceedance	s of the Thresh	nold Criteria for	MWD are expe	ected and do n	ot indicate conta	mination is lea	ving the site.						,			
		1 1	1		1 1			1		- 1			1		I .										1 1				1 1			1	1	1 1		1	1 1

DLA Proje	ect Code: Di	H4120 (DIF	<u>11450060</u>	DUMNISC	Sama	10 ID.	W/A-						
Project: (Downer-Ligh	t-Rail- C	•	1 DOMITES	Well Collar RL:								
Client: Do		MSC	cone										
Address:		0	Score	105/17	Sampl		-5						
BH ID:		a rol,		- 10 W ()	Signat		Web-						
L.v.n.v				· · · · · · · · · · · · · · · · · · ·	Date:	12-7	.18						
Well St	tatus												
Monument da	amaged:		(YES / NO / N/A	We	ell ID visible:	···	YES NO / N/A					
Locked well ca	asing:		Ţ	YES /NO / N/A		on PVC casing:		(ES)NO/N/A					
Cement footin	ng damaged:		,	YES NO NA		ter in monumen	t casing·	YES /NO) N/A					
Standing wate	er, vegetation a	round monume	ent: \	YES NOV N/A		ernal obstruction	=	YES NO NA					
Well Damaged	d;		١	ES / NØ / N/A		ours from ground	-	YES / NO / N/A					
Nearby works:	:	**************	**************					1C3/NOW N/A					
Monu	ment i	Caf las	US Of	fs	me i	ushne							
Comments:	••••••			<i>J</i>	************								
***************************************	***************************************	************	*******************	******************	************		•••						
Casing above g	ground: <i>O</i>	75	••	m agl	Weat	ther Conditio	ns.		İ				
Standing water	r level:7	401(104)	(6.26	m bei			 15-20 □ 20-25 ₽	/					
Total well dept	th:	60 (700)) (14-6	5 m bgl)		•	25-30						
				L		•	23-30 🗀 ->30 🗀	J					
Water level aft				m bgl		Clear 🗹	Double already [7]		_				
Volume of wat	er purged:	4.5	111111	~ 6 .		Clear 121	Partly cloudy 🗆	Overcast					
Water level at	time of samplir	ıg:		m bgl		Calm 🗆	Climba burner and						
Moll accept du				YES (NO)		Callii Li	Slight breeze Z	Moderate bree	ze 🗆				
Purging equipn	nent: ()_ /]		123,609			Windy 🗆						
Purging equipn Sample equipn	nent: PM					Eina 1	Showers		_ [
	****		m internal di	ameter pipe = 1.9	6 L/m. All meas	urements below v	Showers vell collar	Rain					
	Quality Deta	T	T										
Time	DO (1-1)	EC (SPC)	pН	Redox	Temp	Salinity	Comments						
am / pm	(mg/L ⁻¹)	(µS cm ⁻¹)		(mV)	(°C)	(ppt)							
7-52	3.74	20724.1	6.76	159-7	10.78	12-5							
.57	7.11	20647	15. 76	159-8	18.72	12.4			****				
<u></u>	7.00			1001									
74	3.57	205575	0 / 6	13 7-1	19-04	12.4							
						·			*****				

			··	~~~~									
	*												
			····										
							<u></u>		****				
Additional	Comments	•											
			1	,									
Cli	00 N C	1 sold	1.1.	ite seo	1 0								
	$\frac{\omega_1}{3}$	NY W	WVC	114 140	(/).				_				
_ We	H7 auro	ed 2	2										
DLA Environ	mental Servi	ces			· · · · · · · · · · · · · · · · · · ·			TID DATA SUCCE	_				
	V						F-11	ELD DATA SHEET	1				

DLA-Project Code: DLH4120 (DLH0450060) Fall 1156	Isameler M/n/K
2-12400	Sample ID: //// V
Client D	Well Collar RL:
Address: What help Some	Sampler(s): K-S Signature: KSA
BHID:	Date: () F :) (
	June 18 18 18 18 18 18 18 18 18 18 18 18 18
Well Status	
Monument damaged: YES NO / N/A	Well ID visible: YES NO / N/A
Locked well casing: YES / NO / N/A	Cap on PVC casing: YES NO / N/A
Cement footing damaged: YES NOV N/A	Water in monument casing: YES / NO ₄ / N/A
Standing water, vegetation around monument: YES NO N/A	Internal obstruction in casing: YES (NO) N/A
Well Damaged: YES NO N/A	Odours from groundwater: YES /NO) N/A
Nearby works:	
Monument cap falls off	-sught Rushing
Comments:	
7 7-	
Casing above ground: 0 - 7.5 m agl	Weather Conditions:
Standing water level: 6-94 to 6 . (9 m bgl)	Temperature 15-20 □ 20-25 🗷
Total well depth: 16.07 Toc (15.32 mbgl)	25-30 □ >30 □ ·
Initial well volume:	
Water level after purging; m bgl	Clear ☑ Partly cloudy □ Overcast □
Volume of water purged: 4.5	
Water level at time of sampling: m bgl Well purged dry: YES (AG)	Calm 🗹 Slight breeze 🗆 Moderate breeze 🗖
	Windy 🗆
Purging equipment: En le	
Note: 50mm internal diameter pipe = 1.96 L/	Fine Showers Rain
,,,,	The state of the s
Water Quality Details:	
Time DO EC (SPC) pH Redox	Temp Salinity Comments
am / pm (mg/L-1) (µS cm-1) (mV)	(°C) (ppt)
10.14 3-07 16021 6-87 106-51	19.63 9.5
10-15 3.06 16057 -57 107.5	
	19-65 (-)
10.16 3.03 16018.1 16-87 106-5 1	9.67 9.5
	<u> </u>
Additional Comments:	
Alan diet uit.	0
Clear, slight white see	1.
V	
DLA Environmental Services	
- · · - · · · · · · · · · · · · · · · ·	FIELD DATA SHEET

DLA Project Code: DLH4120 (DLH0	~ <u> </u>	Sample I		1646		
Project: Downer Light-Rail	conc	Well Coll				
Client: Downer UHSC	<u> </u>	Sampler(·)		
Address: Noblet	Kol Jeone	Signatur		I C		
BH ID:		Date:	12-9	+ - [δ		
Well Status						
Monument damaged:	(YES) NO / N/A	Well II	D visible:		YESV NO / N/A	
ocked well casing:	YES / NO/ N/A	Cap or	n PVC casing:		YES/ NO / N/A	
Cement footing damaged:	YES / NO/ N/A	Water	r in monument	casing:	YES /NOX N/A	
Standing water, vegetation around monumen	t: YES / NO / N/A	Intern	al obstruction	in casing:	YES NO NA	
Well Damaged:	YES / NO// N/A	Odour	rs from ground	lwater:	YES NO NA	
Nearby works:	. 00 -15 1 2		********************	****		
Nearby works: Monument cap fall	off - light	ערוואי	1 <i>.5</i> ,			
Comments:			<i>I</i>	***		
A 70.						
Casing above ground: 0 - 70 -	// m agl	Weath	er Conditio			
Standing water level:505(10L)	(4.55 mbgl)	Temp	perature :	15-20 🗷 20-25		
Total well depth:	.(12 03 m bgl)		7	25-30 □ >30 〔		
nitial well volume:			_1	_		
Water level after purging:	m bgl	С	lear 🖟	Partly cloudy 🗆	Overcast	
Volume of water purged:2,5			Calm 🗹			
Water level at time of sampling:		С	alm ☑	Slight breeze	Moderate bre	eze 🛘
Well purged dry:	YES /MO			Windy 🗆		
Purging equipment:	pump			Showers 🗆	0-1-	_
Sample equipment: Note: 50mr	n internal diameter pipe = 1.96		Fine 🛭 rements below :		Rain	
Water Quality Details:						
Time DO EC (SPC)	pH Redox	Temp	Salinity	Comments		
am / pm (mg/L ⁻¹) (μS cm ⁻¹)	(mV)	(°C)	(ppt)	_		
1.00 miles that to	7.34 1408	4.06	/Q /	γ		
0 70 5 67 11000 7	118 57 4	14 1 1	1 09.	***************************************		
9.30 5.53 11929.2	6-78 [07-8	14.51				
9.31 5.04 haza.2	6.78 108.0	17.40	6.9			
10 10		1-1-24				***************************************
har I						
		-				
4						
Additional Comments:						
, , , , , , , , , , , , , , , , , , , ,						
shift broi	un colo					
)						

DLA Environmental Services

FIELD DATA SHEET

DI A Projec	rt Code: DE	14120 (DLHO	450060\	DUNIES	Sample	1D: W	11/1/			
	owner-Light					~~~~~	100			
Client: Do		Rall		one landf	Sample	•				
Address:	WHICI			US '			<u> </u>			************
BH ID:			Noble &	fol, lien	Date:	10 5	1			
BN ID.					Date.	12.	t:12			
Well Sta	atus							*****		
Monument dan	naged:		YE	s/NO/M/A	Well	ID visible:			YES / NO / M/A	ı
Locked well cas	sing:		YE	S / NO / N/A	Cap	on PVC casing	g:		YES / NO / N/A	1
Cement footing	g damaged:			:S / NO (N/A)	Wate	er in monume	ent casing:		YES / NO / N/A	
Standing water	, vegetation ar	ound monumen	t; YE	s/No/Ny	Inter	nal obstructi	on in casing:		YES / NO (N/A	
Well Damaged:	;		YE	S /(NOY N/A	Odo	urs from grou	ındwater:		(YES)/ NO / N/A	
Nearby works:	***************************************				***************************************					
			*************			•••••••••	***			
Comments:					*********************					
Casing above g	round:		******************	m agl	Weatl	her Condit	 ions:			
Standing water	level: 🖟	73	•11	m bgl	Ten	nperature	15-20 🗆 2	20-25€	1	
		<u>(O</u>		m bgl			25-30 □ >	30 □	I	
				L						
Water level afte	er purging:	***************************************	••••	m bgl		Clear 🖾	Partly cloud	dy 🗆	Overcast	
Volume of wate	er purged:	0-5	••••	l.						
		ıg;		m bgl		Calm 🗀	Slight bree:	ze 🗆	Moderate bre	eze 🗆
Well purged dr	y:			YES / NO			Windy			
Purging equipn	nent: 🕢 -	М- (
Sample equipm	nent: Do	i, 6/				Fine 🗆	Showers		Rain	
		Note: 50mn	n internal dia	meter pipe = 1.9	6 L/m. All meas	urements belo	w well collar			
	Quality Deta	1								
Time	DO (11)	EC (SPC)	рН	Redox	Temp	Salinity (ppt)	Comme	nts		
am/pm	(mg/L-1)	(μS cm ⁻¹)	71,	(mV)	(°C)	7 </td <td></td> <td></td> <td></td> <td></td>				
10-57	86.0	1174066	7.60	-201-9	26.60	t: 8	-			
10 28	0.83	13598.	7.60	1 . (() . "	26.62	1.8				
10.59	PF.0	133920	حاما, 7	-2023	26.63	7.8				
			,							
Addition:	al Comment	····	······	<u> </u>		.				
			1	. 11) n		۸.	Λ		
gre	en - 1	rellour metho	J (with .	black	120	<u>olpher</u>	<u>it1</u>		
J	Strong	mollo	ne. I	opiclia	f nod	DUN				
DLA Enviro	onmental Ser	vices	······································		· · · · · · · · · · · · · · · · · · ·	- 			FIELD DATA SH	FFT

DLA Proje	ect Code: DI-	H4120 (DLH	<u> </u>	- NHH (1 C. /	Camel	e ID:	Mn/F	
}	owner Light		S(0V)	2 Landfil	Sampl	e ID: / Collar RL:	1100 -	
Client: Do			5000 NHS		Sampl		v s	
Address:		A 1.		d Sion				
BH ID:		170	VOCA K	-or scon	Date:	ure: 900		1.6
					Date.		12.7.	18
Well St	atus							
Monument da	maged:		Υ	ES / NOY N/A	We	ll ID visible:		YESY NO / N/A
Locked well ca	sing:		Υ	ES/NO/N/A	Cap	on PVC casing	:	(ES) NO / N/A
Cement footin	g damaged:		Y	ES / NO / N/A	Wa	ter in monume	nt casing:	YES / NOY N/A
Standing wate	r, vegetation ar	ound monume	nt: Y	ES / NO / N/A	Inte	ernal obstructio	n in casing:	YES /NO) N/A
Well Damaged	l :		· Y	ES /NO// N/A		ours from grour		(ES/10/N/A
Vearby works:							*****	0,,
***********************	155.13				*****			
Comments:	641gng	rushig	027 [ronunel	***************************************	• • • • • • • • • • • • • • • • • • • •	(4174	
**************			**************		(4 * * * * * * * * * * * * * * * * * * *			
Casing above g	round:	70	· /m :	m agl	Weat	ther Conditio	ons:	
Standing water	r level:	30(109)	∫š .4	m bgl)	Te	mperature	15-20 20-25	₹
Fotal well dept	h:	50. (Tec)	(8 -5	3 mbgl)			25-30 □ >30 □	
nitial well volu	ıme:			L ´				
				m bgl		Clear 🗹	Partly cloudy 🗆	Overcast 🔲
olume of wat	er purged:	2	••••	L				
Water level at t	time of samplin	g:,	•••••	m bgl		Calm 🗹	Slight breeze 🗆	Moderate breeze
Well purged dr	_			YES / (10)			Windy □	
Purging equipn	nent: Bad	1				,		
ample equipm	ient: DOT	3P V		***	· · · · · · · · · · · · · · · · · · ·	Fine 🗹	Showers 🗆	Rain 🗆
		Note: 50mr	n internal dia	meter pipe = 1.96	L/m. All meas	urements below	well collar	
Water C	Quality Deta	ils:						į
Time	DO	EC (SPC)	рН	Redox	Temp	Salinity	Comments	
am / pm	(mg/L ⁻¹)	(μS cm ⁻¹)		(mV)	(°C)	(ppt)	Comments	
10-40	2.24	3036.4	7,41	-20-4	17-51	1-6		
10-41	2.22	3033.0	7-41	-20.2	19-54	1 (0		
10-42	1 0	3031-4		-79-9		, ,		
· Pp ·	1.70	20 X - 4	7,41	777	((-)	1-6		

								·····
**********			711.0			****		
			·					
	<u></u>							
Additiona	l Comments	·•					_	
Ŋ						ı	white-	
HAN	monte	Shall	POINT	Lu An	lour	16.10	of the die	cola-
- 11W	100[3]	1/00		<u>vy 00</u>	cow,	211/	W WILLIAM	(over
20	me,	white	sedi	cloud	И.	V	white- nt brain	
DLA Enviror	nmental Servi	ces		<u> </u>	1			TELD DATA SHEET