

PROJECT NUMBER – E04-0922 OCTOBER 2022

Document Control Number - Co1938

E: admin@engage-es.com.au

M: 0478 362 005

ENGAGE ENVIRONMENTAL SERVICES

ABN 13 629 353 662

ANNUAL GROUNDWATER MONITORING

SCONE WASTE FACILITY NOBLET ROAD SCONE NSW

DOCUMENT CONTROL INFORMATION

FIELD OFFICE

Unit 1, 104 George St

Singleton NSW 2330

Project Name – Annual Groundwater Monitoring – Scone Waste Facility

Client - Upper Hunter Shire Council

Project Number – E04-0922

Prepared - DB/SC

Reviewed By and Approved for Release By -STC

Date - 4-10-2022

OFFICE 113 Reservoir Rd Glendale NSW 2285

Ph: 0478 362 005 Ph: 0478 364 588

Email: admin@engage-es.com.au

Engage Environmental Services Pty Limited: ABN 13 629 353 662

WAIVER/DISCLAIMER/LIMITATION

The information contained in these documents is confidential, privileged and only for the information of the intended recipient and may not be used, published or redistributed without the prior written consent of Engage Environmental Services Pty Limited (Engage). Engage undertakes all exercises with reasonable skill and professional attention in the provision of services, including advice to the Client.

The opinions expressed are in good faith and while every care has been taken in preparing these documents, Engage makes no representations and gives no warranties of whatever nature in respect of these documents, including but not limited to the accuracy or completeness of any information, facts and/or opinions contained therein.

Engage, the directors, employees and agents cannot be held liable for the use of and reliance of the opinions, estimates, assumptions and findings in these documents.

Responsibility and any liability arising from misinterpretation or misuse by third parties as to the contents of the reports are not Engage's responsibility and will not be liable.

Information supplied, in electronic form, print form or verbally expressed to Engage is not verified for accuracy, validity, completeness or comprehensiveness unless part of the project being undertaken is a third-party view. Information supplied is deemed to be complete and accurate.

Where site inspections, monitoring, or other fieldwork have taken place, the report is based on the information supplied by the client, observations, laboratory results and any discussions with regulatory authorities.

ABBREVIATIONS

The following is a list of common abbreviations used in the Contamination Sector within environmental reports.

Benzo(a)Pyrene B(a)P Below Ground Level **BGL**

Benzene, Toluene, Ethyl Benzene, Xylene **BTEX**

CLM Contaminated Land Management

CSM Conceptual Site Model DA **Development Application**

DP Deposited Plan

Data Quality Indicator DQI DQO Data Quality Objective

Ecological Investigation Level EIL

Environment Protection Authority (NSW) EPA

EPL Environmental Protection License ESL Ecological Screening Level

Limit of Reporting LOR

Allotment LOT Monitoring Well MW

National Association of Testing Authorities **NATA** National Environment Protection Council NEPC **NEPM** National Environment Protection Measure

NSW New South Wales

Organochlorine Pesticides **OCP**

OEH Office of Environmental and Heritage Organophosphorus Pesticides **OPP PAH** Polycyclic Aromatic Hydrocarbons Potential Contaminant of Concern **PCOC** Polychlorinated Biphenyls **PCB**

Quality Assurance and Quality Control QA/QC

SAC Site Acceptance Criteria

SEPP State Environmental Planning Policy

Standing Water Level **SWL**

Toxicity Characteristic Leaching Procedure **TCLP**

Total Recoverable Hydrocarbons TRH Upper Hunter Shire Council **UHSC** Volatile Organic Compounds VOC

WHS Work Health Safety

TABLE OF CONTENTS

1.0	INTRODUCTION.	
Gen	eral	
Brie	efing	
2.0	SITE CRITERIA A	ND SAMPLING FREQUENCY2
3.0	SAMPLING METH	ODOLOGY4
Gro	undwater Samplin	ıg4
4.0	RESULTS	5
5.0	DISCUSSION	
MW	'A	15
MW	В	16
MW	C	
MW	D	17
MW	E	188
Site	and Maintenance	19
6.0	CONCLUSIONS	20
REFE	RENCES	21
FIGU	RES	
Figur	e 1	Site layout with sample locations
ATTA	CHMENTS	
Attac	hment 1	Data log
	hment 2	NATA Accredited Laboratory Results
	hment 3	Groundwater Field Data Sheets
	hment 4	YSI water quality meter calibration certificate
	- · ·	1

1

1.0 INTRODUCTION

General

Under the requirements of the NSW EPA Environmental Protection Licence (EPL) 5863, Upper Hunter Shire Council (UHSC) is required to conduct quarterly and annual groundwater monitoring of the Scone Waste Facility located on Noblet Road, Scone, NSW, 2337.

The Annual Groundwater Monitoring Report provides a snapshot and trending of analytes of the groundwater conditions at the Site in relation to the current Site Criteria and satisfies the groundwater monitoring requirements of the EPL.

The Scone Waste Facility is an active landfill, it has the potential to be a polluting activity or to adversely impact the groundwater within the immediate vicinity and down hydraulic gradient of the site if there was a leak within the landfill.

Engage Environmental Services (Engage) was commissioned by UHSC to undertake this quarterly round of groundwater monitoring at the site. The quarterly groundwater monitoring was carried out on 13th September 2022.

This report has been prepared utilising information supplied by the client, publicly accessible information, information obtained as part of the onsite fieldwork and analysis, information from Government bodies and from experience, knowledge, and current industry practice.

Briefing

The briefing provided by Upper Hunter Shire Council and contained within EPL 5863 indicates that quarterly groundwater monitoring is required at five locations on the site, monitoring wells A to E (MWA-MWE). As well as a dam located onsite. Monitoring Well D is located within the landfill and the monitoring well accesses the perched water table (leachate) within the landfill. Comparisons against established criteria and historical data allow for trending of data. Trending of data can highlight seasonal variations, increases in analyte concentrations, decreases in analyte concentrations and fluctuations within the dataset. Over a time period the dataset can reveal increasing/decreasing trends highlighting potential site issues.

Refer to **Figure 1**: Site Layout with Sample Locations

2.0 SITE CRITERIA AND SAMPLING FREQUENCY

The groundwater analytical suite and sampling frequency were provided by UHSC and the EPL. Each of the wells have the same sampling regime and analytical suite for sample analysis. The site criterion is sourced from the Australian and New Zealand guidelines for fresh and marine water quality (ANZW 2018) 95% trigger values and National Environment Protection (Assessment of Site Contamination) Measure (NEPM) 2013, unless otherwise stated.

Table 1: Analytes, Site Criteria and Sampling Frequency for Groundwater Monitoring Wells - Quarterly.

	Analytes/Pollutant	Units	Site Criteria NEPM 2013 and ANZW 2018 Fresh Water 95%	Sampling Frequency
	Calcium	mg/L	NA	Quarterly
	Alkalinity (total)	mg/L	NA	Quarterly
	Chloride	mg/L	NA	Quarterly
IONS	Fluoride	mg/L	NA	Quarterly
	Potassium ¹	mg/L	410	Quarterly
	Magnesium	mg/L	NA	Quarterly
	Sulphate	mg/L	NA	Quarterly
	Iron	mg/L	0.3	Quarterly
	Manganese	mg/L	1.9	Quarterly
	Arsenic III & V	mg/L	0.024 (III), 0.013 (V)	Yearly
	Aluminium	mg/L	o.o55 (pH> 6.5)	Yearly
	Barium	mg/L	NA	Yearly
HEAVY	Cadmium	mg/L	0.0002	Yearly
	Cobalt	mg/L	0.001	Yearly
METALS	Copper	mg/L	0.0014	Yearly
	Chromium VI	mg/L	0.001	Yearly
	Chromium III	mg/L	27	Yearly
	Lead	mg/L	0.0034	Yearly
	Mercury	mg/L	0.0006	Yearly
	Zinc	mg/L	0.008	Yearly
PHENOL	Total phenolics	mg/L	0.32	Quarterly
ОСР	Organochlorine Pesticide ³ (OCP)	mg/L	0.00001	Quarterly
OPP	OPPs	mg/L	0.006	Yearly

РСВ	PCBs	mg/L	0.00001	Yearly
Hydrocar	TRH	mg/L	0.26	Yearly
bons	Benzene	mg/L	0.95	Yearly
	Toluene	mg/L	0.18	Yearly
	Ethylbenzene	mg/L	0.3	Yearly
	Xylene (o+p)	mg/l	0.35	Yearly
	PAHs	mg/L	0.016	Yearly
CVCs/	- Total	mg/L	NA	Yearly
VOCCs	Tetrachlorethene (TCE)	mg/L	NA	Yearly
	1,1,2-Trichloroethane	mg/L	6.5	Yearly
	Tetrachloroethene (PCE)	mg/L	0.05	Yearly
	1, 1-Dichloroethene	mg/L	0.03	Yearly
	Vinyl Chloride	mg/L	0.0003	Yearly
	рН	pН	6.5 – 8	Quarterly
	Sodium	mg/L	NA	Quarterly
	Ammonia ²	mg/L	0.9	Quarterly
MISC.	Nitrate	mg/L	50	Quarterly
INORGA	Total organic carbon	mg/L	4	Quarterly
	Electrical conductivity	μS/cm	NA	Quarterly
NICS	Total dissolved solids	mg/L	NA	Yearly
	Biochemical Oxygen	mg/L	NA	Yearly
	Phosphate	mg/L	0.015	Yearly

^{1 -} World Health Organisation Guidelines for Drinking-water Quality 2009, Poor (acceptable) drinking water

^{2 -} Criteria value may not protect key species from chronic toxicity, refer to ANZW 2018 for further guidance. 3 - A Trigger value for DDT is used in the absence of a criteria value for Total OCP. DDT has the lowest criteria of OCPs.

3.0 SAMPLING METHODOLOGY

Groundwater Sampling

The five well locations were identified on the site. The site map was cross-referenced to the markings on the monitoring wells to ensure the correct wells were being sampled. Purging and sampling of monitoring wells was conducted in accordance with the NEPM (NEPC, 2013) and the *Guidelines for the Assessment and Management of Groundwater Contamination* (NSW DECC, 2007).

Purging is the process of removing stagnant water from a well, immediately prior to sampling, causing its replacement by groundwater from the adjacent formation that is representative of actual aquifer conditions. In order to determine when a well has been adequately purged, the physical parameters (pH \pm 0.1 unit, electrical conductivity \pm 5%, temperature \pm 0.20, reduction-oxidation (redox) \pm 10%; and dissolved oxygen \pm 10%.) are monitored while the groundwater is removed during purging.

The physical parameters were measured at regular intervals using a YSI Quatro Pro Plus Water Quality Meter. Stable conditions were indicated by monitoring for three consecutive readings of the physical parameters.

Collection of samples were direct into laboratory issued sampling containers for specific analytes. Samples were obtained using a disposable bailer. Care was taken so the bailer did not contact the sample container. All samples were collected and filled into the correct sample containers, a meniscus was formed on each sampling container prior to sealing to reduce or eliminate head space. The samples were placed immediately into a chilled esky to prevent the loss of potential volatile components.

Decontamination procedures between sampling events and sampling locations was undertaken. Sampling equipment was cleaned before and after sampling to prevent cross contamination. The cleaning procedure included:

- New nitrile disposable gloves for each well;
- Washing and wipe down with phosphate free laboratory grade detergent;
- Rinsing of brush before using brush on equipment;
- Using a brush on equipment if necessary;
- Rinsing with deionised water and wipe down with new wipe if necessary; and,
- New disposable bailer used for each well.

Appropriate decontamination procedures were appropriate during groundwater sampling.

4.0 RESULTS

The five groundwater monitoring wells were sampled during the September 2022 sampling event, results are detailed in **Tables 2** to **11**. Comparisons have been made to the previous quarterly rounds of 2021 monitoring (March and June) also the yearly monitoring of December 2021. Refer to **Attachment 2** – NATA Accredited Laboratory Results and **Attachment 1** – Data Log.

Table 2 – Quarterly Analytes Groundwater Results and Comparison (MWA)

	Analytes	Units	Site Criteria (mg/L)	MWA Sept 2021	MWA Dec 2021	MWA March 2022	MWA June 2022	MWA Sept 2022
	Calcium	mg/L	NA	540	460	66	520	550
	Alkalinity	mg/L	NA	500	610	610	510	510
	Chloride	mg/L	NA	6300	2900	250	7000	6900
IONS	Fluoride	mg/L	NA	0.1	<lor< th=""><th>0.7</th><th>0.2</th><th>0.1</th></lor<>	0.7	0.2	0.1
	Potassium ¹	mg/L	410	3	2	1	3	3
	Magnesium	mg/L	NA	990	920	100	110	950
	Sulphate	mg/L	NA	48	66	29	48	50
HEAVY	Iron	mg/L	0.3	<lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<></th></lor<>	<lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<>	<lor< th=""><th><lor< th=""><th><lor< th=""></lor<></th></lor<></th></lor<>	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
METALS	Manganese	mg/L	1.9	0.01	0.016	0.009	0.03	<lor< th=""></lor<>
Phenols	Total	mg/L	0.32	<lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<></th></lor<>	<lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<>	<lor< th=""><th><lor< th=""><th><lor< th=""></lor<></th></lor<></th></lor<>	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
OCPs	OCP ³	mg/L	0.00001	<lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<></th></lor<>	<lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<>	<lor< th=""><th><lor< th=""><th><lor< th=""></lor<></th></lor<></th></lor<>	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
	pН	pН	6.5 – 8	6.8	7.2	7.6	6.9	6.2
	Sodium	mg/L	NA	2100	1500	350	1800	1800
MISC.	Ammonia ²	mg/L	0.9	0.068	0.019	0.031	0.037	0.049
INORGANICS	Nitrate	mg/L	0.7	0.6	0.31	0.058	0.55	0.51
	тос	mg/L	4	3	8	20	5	5
	EC	μS/cm	NA	19000	8900	1600	20000	17000

<LOR = No Detection. Analyte is below the Laboratory LOR

 $¹⁻World\ Health\ Organisation\ Guidelines\ for\ Drinking-water\ Quality\ 2009,\ Poor\ (acceptable)\ drinking\ water\ criteria.$

^{2 -} Criteria value may not protect key species from chronic toxicity, refer to ANZW 2018 for further guidance.

^{3 -} A Trigger value for DDT is used in the absence of a criteria value for Total OCP. DDT has the lowest criteria of OCPs.

Table 3 – Yearly Analytes Groundwater Results and Comparison Annual 2021 &-Sept 2022 (MWA)

Sampling Parameter	Units	Threshold Criteria (mg/L)	MWA Annual 2021	MWA Sept 2022
Total dissolved solids	mg/L	NA	6800	14000
Biochemical Oxygen Demand	mg/L	NA	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
Phosphate	mg/L	0.015^{G}	0.04	0.071
Arsenic III & V	mg/L	0.024 (III), 0.013	0.001	0.001
Aluminium	mg/L	o.o55 (pH> 6.5)	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
Barium	mg/L	NA	0.5	0.54
Cadmium	mg/L	0.0002	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
Copper	mg/L	0.0014	0.001	0.002
Chromium VI	mg/L	0.004	0.005	<lor< th=""></lor<>
Chromium (Total)	mg/L	27	0.003	<lor< th=""></lor<>
Lead	mg/L	0.0034	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
Mercury	mg/L	0.0006	<lor< th=""><th>0.0002</th></lor<>	0.0002
Zinc	mg/L	0.008 ^D	0.034	0.013
Benzene	mg/L	0.95	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
Toluene	mg/L	0.18^{L}	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
Ethylbenzene	mg/L	0.08^{L}	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
Xylene	mg/L		<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
TRH	mg/L	NA	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
Tetrachlorethene (TCE)	mg/L	NA	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
1,1,2-Trichloroethane (TCA)	mg/L	6.500	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
Tetrachloroethene (PCE)	mg/L	0.05^{N}	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
1,1-Dichloroethene	mg/L	0.03 ^P	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
Vinyl Chloride	mg/L	$\rm o.ooo3_{N}$	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
PCBs	mg/L	0.00003 ^A	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
PAHs	mg/L	0.016 ^B	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
OPPs	mg/L	0.00002 ^C	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>

Table 4 - Quarterly Groundwater Results and Comparison (MWB)

	Analytes	Units	Site Criteria	MWB Sept 2021	MWB Dec 2021	MWB March	MWB June	MWB Sept
			(mg/L)			2022	2022	2022
	Calcium	mg/L	NA	480	470	420	460	470
	Alkalinity	mg/L	NA	420	440	430	430	440
	Chloride	mg/L	NA	4300	5000	4600	4800	4700
IONS	Fluoride	mg/L	NA	0.2	0.3	0.2	0.3	0.2
	Potassium ¹	mg/L	410	4	2	2	2	3
	Magnesium	mg/L	NA	600	640	620	650	570
	Sulphate	mg/L	NA	76	82	85	81	77
THE ANYNAMETRAL C	Iron	mg/L	0.3	<lor< th=""><th><lor< th=""><th>0.04</th><th>0.06</th><th><lor< th=""></lor<></th></lor<></th></lor<>	<lor< th=""><th>0.04</th><th>0.06</th><th><lor< th=""></lor<></th></lor<>	0.04	0.06	<lor< th=""></lor<>
HEAVY METALS	Manganese	mg/L	1.9	0.02	0.011	0.01	0.01	0.014
ОСР	OCP ³	mg/L	0.00001	<lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<></th></lor<>	<lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<>	<lor< th=""><th><lor< th=""><th><lor< th=""></lor<></th></lor<></th></lor<>	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
PHENOLS	Total phenolics	mg/L	0.32	<lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<></th></lor<>	<lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<>	<lor< th=""><th><lor< th=""><th><lor< th=""></lor<></th></lor<></th></lor<>	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
	рН	pН	6.5 – 8	6.9	6.9	6.8	7.0	6.8
	Sodium	mg/L	NA	1500	1300	1000	1300	1400
MISC.	Ammonia ²	mg/L	0.9	0.024	0.025	0.011	0.017	0.065
INORGANICS	Nitrate	mg/L	0.7	0.66	0.62	0.38	0.36	0.32
	тос	mg/L	4	6	5	6	5	5
	EC	μS/cm	NA	14000	14000	13000	14000	13000

<LOR = No Detection. Analyte is below the Laboratory LOR

^{1 -} World Health Organisation Guidelines for Drinking-water Quality 2009, Poor (acceptable) drinking water criteria.

² - Criteria value may not protect key species from chronic toxicity, refer to ANZW 2018 for further guidance.

^{3 -} A Trigger value for DDT is used in the absence of a criteria value for Total OCP. DDT has the lowest criteria of OCPs.

Table 5 – Yearly Analytes Groundwater Results and Comparison Annual 2021-Sept 2022 (MWB)

Sampling Parameter	Units	Threshold Criteria (mg/L)	MWB Annual 2021	MWB Sept 2022
Total dissolved solids	mg/L	NA	12000	10000
Biochemical Oxygen Demand	mg/L	NA	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
Phosphate	mg/L	0.015	0.008	0.02
Arsenic III & V	mg/L	0.024 (III), 0.013	<lor< th=""><th>0.001</th></lor<>	0.001
Aluminium	mg/L	o.o55 (pH> 6.5)	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
Barium	mg/L	NA	0.43	0.39
Cadmium	mg/L	0.0002	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
Copper	mg/L	0.0014	<lor< th=""><th>0.002</th></lor<>	0.002
Chromium VI	mg/L	0.004	0.008	<lor< th=""></lor<>
Chromium (Total)	mg/L	0.004	0.003	0.004
Lead	mg/L	0.0034	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
Mercury	mg/L	0.0006	<lor< th=""><th>0.00007</th></lor<>	0.00007
Zinc	mg/L	0.008	0.033	0.009
Benzene	mg/L	0.95	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
Toluene	mg/L	0.18 ^L	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
Ethylbenzene	mg/L	0.08^{L}	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
Xylene	mg/L		<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
TRH	mg/L	NA	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
Tetrachlorethene (TCE)	mg/L	NA	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
1,1,2-Trichloroethane (TCA)	mg/L	6500 (1,1,2 TCA)	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
Tetrachloroethene (PCE)	mg/L	0.05	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
1,1-Dichloroethene	mg/L	0.03	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
Vinyl Chloride	mg/L	0.0003	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
PCBs	mg/L	0.00003	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
PAHs	mg/L	0.016	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
OPPs	mg/L	0.00002	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>

Table 6 - Quarterly Groundwater Results and Comparison (MWC)

	Analytes	Units	Site Criteria (mg/L)	MWC Sept 2021	MWC Dec 2021	MWC March 2022	MWC June 2022	MWC Sept 2022
	Calcium	mg/L	NA	330	310	370	300	61
	Alkalinity (total)	mg/L	NA	890	920	930	940	600
	Chloride	mg/L	NA	3400	4200	4000	3800	840
IONS	Fluoride	mg/L	NA	0.2	0.3	0.2	0.2	0.3
	Potassium ¹	mg/L	410	3	1	2	2	1
	Magnesium	mg/L	NA	440	450	440	440	110
	Sulphate	mg/L	NA	120	98	120	88	170
HEAVY	Iron	mg/L	0.3	0.01	<lor< th=""><th><lor< th=""><th><lor< th=""><th>0.05</th></lor<></th></lor<></th></lor<>	<lor< th=""><th><lor< th=""><th>0.05</th></lor<></th></lor<>	<lor< th=""><th>0.05</th></lor<>	0.05
METALS	Manganese	mg/L	1.9	4.4	3	2.2	2.1	0.68
PHENOLS	Total phenolics	mg/L	0.32	<lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<></th></lor<>	<lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<>	<lor< th=""><th><lor< th=""><th><lor< th=""></lor<></th></lor<></th></lor<>	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
ОСР	OCP ³	mg/L	0.000	<lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<></th></lor<>	<lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<>	<lor< th=""><th><lor< th=""><th><lor< th=""></lor<></th></lor<></th></lor<>	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
	рН	pН	6.5 – 8	6.8	7	6.9	6.9	7.2
	Sodium	mg/L	NA	1700	1400	2000	1400	500
MISC.	Ammonia ²	mg/L	0.9	0.021	0.096	0.048	0.073	0.05
INORGANIC S	Nitrate	mg/L	0.7	0.058	0.066	0.11	0.092	1.2
S	тос	mg/L	4	9	8	8	8	75
	EC	μS/cm	NA	13000	13000	11000	13000	3600

<LOR = No Detection. Analyte is below the Laboratory LOR

 $¹⁻World\ Health\ Organisation\ Guidelines\ for\ Drinking-water\ Quality\ 2009,\ Poor\ (acceptable)\ drinking\ water\ criteria.$

² - Criteria value may not protect key species from chronic toxicity, refer to ANZW 2018 for further guidance.

^{3 -} A Trigger value for DDT is used in the absence of a criteria value for Total OCP. DDT has the lowest criteria of OCPs.

Table 7 – Yearly Analytes Groundwater Results and Comparison Annual 2021-Sept 2022 (MWC)

		Threshold	MWC	MWC
Sampling Parameter	Units	Criteria	Annual	Sept 2022
		(mg/L)	2021	
Total dissolved solids	mg/L	NA	8700	2200
Biochemical Oxygen Demand	mg/L	NA	6	<lor< th=""></lor<>
Phosphate	mg/L	0.015	0.081	0.04
Arsenic III & V	mg/L	0.024 (III),	<lor< th=""><th>0.002</th></lor<>	0.002
Aluminium	mg/L	o.o55 (pH> 6.5)	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
Barium	mg/L	NA	0.34	0.08
Cadmium	mg/L	0.0002	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
Copper	mg/L	0.0014	0.001	0.003
Chromium VI	mg/L	0.004	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
Chromium (total)	mg/L	0.004	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
Lead	mg/L	0.0034	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
Mercury	mg/L	0.0006	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
Zinc	mg/L	0.008	0.013	0.005
Benzene	mg/L	0.95	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
Toluene	mg/L	0.18	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
Ethylbenzene	mg/L	0.08	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
Xylene	mg/L		<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
TRH	mg/L	NA	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
Tetrachlorethene (TCE)	mg/L	NA	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
1,1,2-Trichloroethane (TCA)	mg/L	6500 (1,1,2 TCA)	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
Tetrachloroethene (PCE)	mg/L	0.05	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
1,1-Dichloroethene	mg/L	0.03	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
Vinyl Chloride	mg/L	0.0003	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
PCBs	mg/L	0.00003	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
PAHs	mg/L	0.016	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
OPPs	mg/L	0.00002	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>

MWD is a leachate monitoring well which provides access to the perched landfill leachate water table. The Site Criteria for this particular well is only used as a general indicator of the leachate water quality.

Table 8 - Quarterly Groundwater Results and Comparison (MWD)

	Analytes	Units	Site Criteria (mg/L)	MWD Sept 2021	MWD Dec 2021	MWD March	MWD June 2022	MWD Sept 2022
	Calcium	mg/L	NA	170	180	220	190	190
	Alkalinity (total)	mg/L	NA	1700	950	1700	1500	1500
	Chloride	mg/L	NA	`600	920	1700	1800	1400
IONS	Fluoride	mg/L	NA	0.2	0.2	0.3	0.3	0.3
	Potassium ¹	mg/L	410	120	46	79	91	82
	Magnesium	mg/L	NA	170	88	140	170	150
	Sulphate	mg/L	NA	41	98	49	38	85
HEAVY	Iron	mg/L	0.3	0.58	0.44	0.65	0.87	0.75
METALS	Manganese	mg/L	1.9	0.59	0.56	0.59	0.45	0.61
PHENOLS	Total phenolics	mg/L	0.32	<lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<></th></lor<>	<lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<>	<lor< th=""><th><lor< th=""><th><lor< th=""></lor<></th></lor<></th></lor<>	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
ОСР	OCP ³	mg/L	0.00001	<lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<></th></lor<>	<lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<>	<lor< th=""><th><lor< th=""><th><lor< th=""></lor<></th></lor<></th></lor<>	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
	рН	pН	6.5 – 8	7.5	7.3	7.4	7.4	7.5
	Sodium	mg/L	NA	970	500	840	1100	810
MISC.	Ammonia ²	mg/L	0.9	170	67	130	130	140
INORGANICS	Nitrate	mg/L	0.7	0.008	0.23	0.02	<lor< th=""><th>0.056</th></lor<>	0.056
	тос	mg/L	4	110	77	140	130	220
	EC	μS/cm	NA	8400	4400	7300	8100	6400

<LOR = No Detection. Analyte is below the Laboratory LOR

 $^{{\}tt 1-World\ Health\ Organisation\ Guidelines\ for\ Drinking-water\ Quality\ 2009,\ Poor\ (acceptable)\ drinking\ water\ criteria.}$

² - Criteria value may not protect key species from chronic toxicity, refer to ANZW 2018 for further guidance.

^{3 -} A Trigger value for DDT is used in the absence of a criteria value for Total OCP. DDT has the lowest criteria of OCPs.

Table 9 – Yearly Analytes Groundwater Results and Comparison Annual 2021-Sept 2022 (MWD)

Sampling Parameter	Units	Threshold Criteria (mg/L)	MWD (leachate) Annual 2021	MWD (leachate) Sept 2022
Total dissolved solids	mg/L	NA	2600	4800
Biochemical Oxygen Demand	mg/L	NA	140	74
Phosphate	mg/L	0.015	0.4	0.042
Arsenic III & V	mg/L	0.024 (III),	0.003	0.009
Aluminium	mg/L	o.o55 (pH> 6.5)	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
Barium	mg/L	NA	0.4	0.68
Cadmium	mg/L	0.0002	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
Copper	mg/L	0.0014	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
Chromium VI	mg/L	0.004	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
Chromium (total)	mg/L	0.004	<lor< th=""><th>0.018</th></lor<>	0.018
Lead	mg/L	0.0034	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
Mercury	mg/L	0.0006	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
Zine	mg/L	0.008	0.01	0.01
Benzene	mg/L	0.95	0.002	0.005
Toluene	mg/L	0.18	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
Ethylbenzene	mg/L	0.08	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
Xylene	mg/L		<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
TRH	mg/L	NA	2.434	2.249
Tetrachlorethene (TCE)	mg/L	NA	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
1,1,2-Trichloroethane (TCA)	mg/L	6.5	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
Tetrachloroethene (PCE)	mg/L	0.05	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
1,1-Dichloroethene	mg/L	0.03	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
Vinyl Chloride	mg/L	0.0003	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
PCBs	mg/L	0.00003	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
PAHs	mg/L	0.016	0.095	0.012
OPPs	mg/L	0.00002	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>

Table 10 -Quarterly Groundwater Results and Comparison (MWE)

		Unit	Site	MWE	MWE	MWE	MWE	MWE
	Analytes Calcium Alkalinity Chloride Fluoride Potassium Magnesium Sulphate Iron Manganese Total phenolics OCP3 pH Sodium Ammonia ²		Criteria	Sept	Dec	March	June	Sept
		S	(mg/L)	2021	2021	2022	2022	2022
	Calcium	mg/L	NA	100	68	140	86	57
	Alkalinity	mg/L	NA	1100	1300	1200	1300	1000
	Chloride	mg/L	NA	770	370	990	69	260
IONS	Fluoride	mg/L	NA	0.4	0.4	1.1	0.5	0.3
	Potassium ¹	mg/L	410	2	1	1	0.8	2
	Magnesium	mg/L	NA	110	70	130	100	54
	Sulphate	mg/L	NA	170	96	200	170	18
HEAVY METALS	Iron	mg/L	0.3	0.43	1.9	0.03	0.48	2.2
HEAVI METALS	Manganese	mg/L	1.9	2	1.1	1.3	0.6	1
PHENOLS	Total phenolics	mg/L	0.32	<lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<></th></lor<>	<lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<>	<lor< th=""><th><lor< th=""><th><lor< th=""></lor<></th></lor<></th></lor<>	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
ОСР	OCP ³	mg/L	0.00001	<lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<></th></lor<>	<lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<>	<lor< th=""><th><lor< th=""><th><lor< th=""></lor<></th></lor<></th></lor<>	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
	рН	pН	6.5 – 8	7.2	7.1	7.2	7.3	7.1
	Sodium	mg/L	NA	950	600	700	650	380
MISC.	Ammonia ²	mg/L	0.9	0.52	0.021	0.036	0.23	0.068
INORGANICS	Nitrate	mg/L	0.7	<lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<></th></lor<>	<lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<>	<lor< th=""><th><lor< th=""><th><lor< th=""></lor<></th></lor<></th></lor<>	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
	тос	mg/L	4	6	14	6	7	150
	EC	μS/c	NA	4600	3300	4900	4500	2300

<LOR = No Detection. Analyte is below the Laboratory LOR

^{1 -} World Health Organisation Guidelines for Drinking-water Quality 2009, Poor (acceptable) drinking water criteria.

^{2 -} Criteria value may not protect key species from chronic toxicity, refer to ANZW 2018 for further guidance.

^{3 -} A Trigger value for DDT is used in the absence of a criteria value for Total OCP. DDT has the lowest criteria of OCPs

Table 11 – Yearly Analytes Groundwater Results and Comparison Annual 2021-Sept 2022 (MWE)

Sampling Parameter	Unit s	Threshold Criteria (mg/L)	MWE Annual 2021	MWE Sept 2022
Total dissolved solids	mg/L	NA	1700	1800
Biochemical Oxygen Demand	mg/L	NA	22	26
Phosphate	mg/L	0.015	0.03	<lor< th=""></lor<>
Arsenic III & V	mg/L	0.024 (III), 0.013	0.008	0.003
Aluminium	mg/L	o.o55 (pH> 6.5)	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
Barium	mg/L	NA	0.095	0.069
Cadmium	mg/L	0.0002	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
Copper	mg/L	0.0014	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
Chromium VI	mg/L	0.004	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
Chromium (total)	mg/L	0.004	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
Lead	mg/L	0.0034	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
Mercury	mg/L	0.0006	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
Zinc	mg/L	0.008	0.012	0.005
Benzene	mg/L	0.95	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
Toluene	mg/L	0.18	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
Ethylbenzene	mg/L	0.08	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
Xylene	mg/L		<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
TRH	mg/L	NA	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
Tetrachlorethene (TCE)	mg/L	NA	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
1,1,2-Trichloroethane (TCA)	mg/L	6.5	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
Tetrachloroethene (PCE)	mg/L	0.05	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
1,1-Dichloroethene	mg/L	0.03	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
Vinyl Chloride	mg/L	0.0003	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
PCBs	mg/L	0.00003	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
PAHs	mg/L	0.016	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
OPPs	mg/L	0.00002	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>

5.0 DISCUSSION

The inferred hydraulic gradient for the site is a down gradient towards Parsons Gully to the west. The location of the four wells surrounding the landfill place wells MWA, MWB and MWC down-hydraulic gradient and well MWE up-hydraulic gradient of the landfill. Well MWD is located within the perched landfill water table, this enables access to the leachate within the landfill.

The following is a summary of the significant results for September 2022 in relation to the Site Criteria. Key increasing trends, decreasing trends and exceedances of the threshold criteria are indicated.

MWA

MWA is located in the northwest section of the site and is considered to be a down-hydraulic gradient monitoring well. There is farmland adjoining to the north and west of this location. The following changes have occurred in the water quality of MWA:

- Phosphate has increased from 0.04mg/L to 0.071mg/L still above the criteria of 0.015mg/L.
- Copper has increased from 0.001mg/L to 0.002mg/L above the criteria of 0.0014mg/L.
- Zinc has decreased from 0.034mg/L to 0.013 mg/L, still above the site criteria of 0.008mg/L.
- Total Organic Carbon has fluctuated between 3mg/L, below the site criteria, to 20mg/L, above the site criteria of 4mg/L over the course of the year: December 2021 8mg/L, March 2022 20mg/L, June 2022 5mg/L, September 2022 5mg/L.
- Chromium has decreased from 0.05mg/L to below limit of reporting.
- The pH result in September 2022 was below the criteria of between 6.5-8. pH results since the March and June 2022 monitoring periods have decreased.
- Manganese has decreased from 0.03mg/L in June to below limit of reporting in September 2022.
- Magnesium has increased from 110mg/L in June to 950mg/L in September 2022.
- Mercury has increased from below limit of reporting to 0.0002mg/L in September 2022.
- Total dissolved solids have increased from 6800mg/L to 14000mg/L in September 2022.

All other analytes reported concentrations consistent with previous monitoring data.

MWB

MWB is located in the southwest section of the site and is considered to be a down-hydraulic gradient monitoring well. There is farmland to the south and west of this location. The well has remained relatively stable.

- The concentration of TOC has fluctuated between 5mg/L and 6mg/L each quarter over 2021-2022 in MWB.
- The concentration of Ammonia has increased from 0.017mg/L in June to 0.065mg/L in September 2022.
- The concentration of Iron has decreased from 0.06mg/L in June to below limit of reporting in September 2022.
- Phosphate has increased from 0.008mg/L in December 2021 to a concentration of 0.033mg/L in September 2022, above the site criteria of 0.015mg/L.
- Zinc concentration increased from 0.033mg/L in December 2021 to 0.009mg/L in September 2022, above site criteria of 0.008mg/L.
- Chromium VI has decreased from 0.008mg/L to below limit of reporting.
- Iron concentration has decreased from 0.06mg/L in June to below limit of reporting in September 2022.
- Arsenic and copper concentrations have increased from below the limit of reporting in December 2021 to 0.001 mg/L and 0.002 mg/L respectively in September 2022.
- Mercury concentrations have increased from below the limit of reporting to 0.00007 mg/L in September 2022.

All other analytes reported concentrations consistent with previous monitoring data.

MWC

MWC is located on the southern boundary of the site, down hydraulic gradient of the landfill and onsite dam. There is farmland to the south of well, along with a stand of vegetation immediately south of the well. This well has shown increasing turbidity with sedimentation in observations from the field. The following changes have occurred in the water quality of MWC:

- The concentration of Manganese has fluctuated throughout the last 5 sampling periods with 5 concentrations above site criteria (1.9mg/L). The concentration of the September 2022 sampling event (0.68mg/L) is lower than the June 2020 sampling event (2.1mg/L).
- Concentration of TOC has fluctuated throughout the last 4 sampling periods with 5 concentrations above site criteria (4mg/L). The concentration of the September 2022 sampling event (75mg/L) is higher than the previous June sampling event (8mg/L).

- Concentration of Phosphate was detected at 0.041mg/L which is below the previous concentration of 0.081mg/L in June 2022, and above the site criteria of 0.015mg/L.
- Calcium concentration decreased from 300mg/L in June 2022 to 61mg/L in September 2022.
- Chloride concentration decreased from 3800mg/L in June to 840mg/L in September 2022.
- Magnesium concentration decreased from 440mg/L in June to 110mg/L in September 2022.
- Zinc concentration slightly decreased from 0.013mg/L in December 2021 to 0.005mg/L in September 2022. September results were below the site criteria of 0.008mg/L.
- Sulphate concentration increased from 88mg/L in June 2022 to 170mg/L in December 2022.
- Iron concentrations have increased from below limit of reporting to 0.05mg/L in September 2022.
- Nitrate concentrations have increased from 0.092mg/L in June to 1.2mg/L in September 2022.
- BOD has reduced from 6mg/L to below limit of reporting in September 2022.
- Arsenic concentrations have increased from below limit of reporting to 0.002mg/L in September 2022.
- Copper concentrations have increased from 0.001mg/L to 0.003mg/L in September 2022.

All other analytes reported concentrations consistent with previous monitoring data.

MWD

The water collected and analysed from well MWD is landfill leachate and as such the Site Criteria is not used to compare the results against. The results of MWD are used as an indicator of current conditions within the landfill with trends and seasonal variations apparent. MWD is also to be used as a comparison to the external monitoring wells.

The following changes occurred in the water quality of the landfill leachate well MWD:

- Ammonia concentration was 140 mg/L in September 2022, the current trend is for the increase of Ammonia, in December 2021 the concentration was 67mg/L.
- TOC has increased from 77 mg/L in December 2021 to a concentration of 220 mg/L in September 2022.
- Phosphate has decreased from 0.4mg/L to 0.042mg/L, in September 2022.

- PAHs were detected at a concentration of 0.012mg/L, a decrease from 0.095mg/L. In particular Naphthalene was detected.
- Total TRH was detected at 2200mg/L.
- Total dissolved solids has increased from 2600mg/L to 4800mg/L in September 2022.
- Nitrate concentrations have increased from below limit of reporting in June to 0.056mg/L in September 2022.

MWE

MWE is located on the eastern boundary of the site and is an up-gradient groundwater monitoring well. There are a series of dams to the east of the well. The following changes have occurred in the water quality of MWE:

- The concentration of TOCs has fluctuated between 6mg/L to 150 mg/L over the past year: September 2021 6mg/L, December 2021 14mg/L, March 2022 6mg/L, June 2022 7mg/L, and September 150mg/L.
- Iron has increased from 0.48mg/L in June 2022 to 2.2mg/L in September 2022 above site criteria (0.3mg/L)
- Zinc has decreased from the previous yearly monitoring, from 0.012 mg/L in December 2021 to 0.005 mg/L in September 2022.
- Sulphate and Magnesium have decreased between the June and September 2022 monitoring periods.
- Chloride concentration increased from 69mg/L in June to 260mg/L in September 2022.

All other analytes reported concentrations consistent with previous monitoring data.

The following analytes exceeded the Threshold Criteria during the September 2022 sampling event, excluding the Leachate Monitoring well (MWD); Total Organic Carbon and Zinc in MWA and MWB. Total Organic Carbon in MWC and MWE. Nitrate in MWC. Phosphate in MWA, MWB, MWC & MWE. Iron in MWE. Copper in MWA, MWB, MWC. pH in MWA. Refer to **Attachment 1** – Data Log.

The monitoring well up hydraulic gradient of the site is MWE and there a number of exceedances within this well, including Iron, Total Organic Carbon and Phosphate.

Site and Maintenance

The weather conditions (drought and rain events) and surrounding land uses are likely impacting the local groundwater conditions. The area has had several flooding event over the last 12 months.

6.0 CONCLUSIONS

There are seasonal fluctuations observed with regional groundwater conditions. The recent weather conditions of increased rainfall throughout 2021-2022 compared to previous years may have influenced the groundwater conditions. Trending of these analytes over time may indicate a seasonal fluctuation, an anomaly or highlight an issue on the site (or surrounding area). The trending of analytes occurs in the annual groundwater monitoring report with a running comparison in the quarterly monitoring reports.

The results and discussion of the laboratory sample analysis from the Scone Waste Facility during the September 2022 sampling event displayed several ongoing exceedances of the Site Criteria. The MWE is considered an upgradient monitoring well and is an indicator of surrounding groundwater conditions.

The following analytes exceeded the Threshold Criteria during the September 2022 sampling event, excluding the Leachate Monitoring well (MWD), Total Organic Carbon and Zinc in MWA and MWB; Total Organic Carbon in MWC and MWE; Nitrate in MWC; Phosphate in MWA, MWB, MWC & MWE; Iron in MWE; Copper in MWA, MWB, MWC; pH in MWA. Continued sampling and data collection will allow robust trending and statistical analysis of data to occur.

The next water sampling event will be a quarterly monitoring event which will be undertaken in December 2022.

REFERENCES

- Australian and New Zealand Guidelines for the Management of Contaminated Sites (ANZECC/NHMRC 1992);
- Australia and New Zealand Guidelines for Fresh and Marine Water Quality (ANZW, 2018);
- Australian Drinking Water Guidelines, National Water Quality Management Strategy 2011;
- Contaminated Land Management Act 1997 (NSW);
- Contaminated Sites: Guidelines for Consultants Reporting on Contaminated Sites (NSW EPA 2011);
- Contaminated Sites: Guidelines on Duty to Report Contamination under the Contamination
 Land Management Act 1997 (NSW DECC, 2009);
- Contaminated Sites: Guidelines for the Assessment and Management of Groundwater
 Contamination (NSW DEC, 2007);
- Contaminated Sites: Guidelines on Significant Risk of Harm from Contaminated Land and the Duty to Report (NSW EPA 1999);
- Contaminated Sites: Sampling Design Guidelines (NSW EPA 1995);
- Environmental Guidelines: Solid Waste Landfills (NSW EPA, 1996);
- Environmental Guidelines Solid Waste Landfills Second edition, (NSW EPA 2016);
- Health Based Soil Investigation Levels, Imray, P & Langley, A, National Environmental Health Forum Monographs, Soil Series No. 2 (2nd Ed), South Australian Health Commission (NEHF 1998);
- National Environment Protection (Assessment of Site Contamination) Measure (No.1)
 (NEPM, 2013) as amended;
- Storage and Handling of Dangerous Goods Code of Practice 2005;
- Work Health and Safety Act 2011 (NSW) and associated regulations.

FIGURE

Monitoring Well Location

Image: Google Maps 2019

ENGAGE Environmental Services Pty Limited 113 Reservoir Rd Glendale NSW 2285

0478 362005

[™] Figure 1 - Site Layoເ	ut and We	II Locat	ions
Client	Project No.	Figure No	Date
UHSC	E04-0619	1	17/6/2019
	Scale	Compiled	Revision
admin@engage-es.com.au	NA	SC	3

Attachment 1 Data log

		Threshold Criteria Units	NA mg/L	NA mg/L	NA mg/L	NA mg/L	0.3 mg/L	NA mg/L	mg/L	0.00001 mg/L	NA mg/L	6.5–8 pH	NA mg/L	0.9 mg/L	0.7 mg/L	NA mg/L	4 mg/L	0.32 mg/L	NA μS/cm
ENVI	ENGAGE IRONMENTAL SERVICES	Analytes	Calcium	Alkalinity	Chloride	Fluoride		Magnesium	Manganese	Organochlori ne pesticides (OCP)	Potassium	£	Sodium	Ammonia	Nitrate	Sulfate	Total organic carbon	Total phenolics	Electrical conductivity (EC)
		Monitoring frequency	Quarterly	Quarterly	Quarterly	Quarterly	Quarterly	Quarterly	Quarterly	Quarterly	Quarterly	Quarterly	Quarterly	Quarterly	Quarterly	Quarterly	Quarterly	Quarterly	Quarterly
MWA	305662 13/09/20	22	550	510	6900	0.1	<0.01	950	<0.005	<0.0002	3	6.2	1800	0.049	0.51	50	5	<0.05	17000
MWB	305662 13/09/20	22	470	440	4700	0.2	<0.01	570	0.014	<0.0002	3	6.8	1400	0.065	0.32	77	5	<0.05	13000
MWC	305662 13/09/20	22	61	600	840	0.3	0.05	110	0.68	<0.0002	1	7.2	500	0.05	1.2	170	75	<0.05	3600
MWD	305662 13/09/20	22	190	1500	1400	0.3	0.75	150	0.61	<0.0002	82	7.5	810	140	0.056	85	220	<0.05	6400
MWE	305662 13/09/20	22	57	1000	260	0.3	2.2	54	1	<0.0002	2	7.1	380	0.068	<0.005	18	150	<0.05	2300

	NA	NA	0.015	0.024 (III) 0.013 (V)	0.055 (pH> 6.5)	NA	0.0002	0.09	0.0014	0.001	NA	0.0034	0.0006	0.008	0.016	0.26	0.95	0.18	0.08	0.35	NA	6500	0.05	0.03	0.0003	0.00003	0.00002
	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
	Total dissolved solids	Biochemica I oxygen demand	Phosphate	Arsenic III & V	Aluminium	Barium	Cadmium	Cobalt	Copper	Chromium VI	Chromium (total)	Lead	Mercury	Zinc	PAHs	ТКН	Benzene	Toluene	Ethylbenze ne	total xylene	Tetrachlore thene (TCE)	1,1,1- Trichloroet hane (TCA)	Tetrachloro ethene (PCE)	1,2- Dichloroet hene	Vinyl Chloride	PCBs	OPPs
	Yearly	Yearly	Yearly	Yearly	Yearly	Yearly	Yearly	Yearly	Yearly	Yearly	Yearly	Yearly	Yearly	Yearly	Yearly	Yearly	Yearly	Yearly	Yearly	Yearly	Yearly	Yearly	Yearly	Yearly	Yearly	Yearly	Yearly
MWA	14000 <	5	0.071	0.001	<0.01	0.54	<0.0001	<0.001	0.002	<0.005	0.004	<0.001	0.0002	0.013	ND	<0.01	<0.001	<0.001	<0.001	<0.002	<0.001	<0.001	<0.001	<0.001	<0.01	<0.002	<0.0002
MWB	10000 <	5	0.02	0.001	<0.01	0.39	<0.0001	<0.001	0.002	<0.005	0.004	<0.001	0.00007	0.009	ND	<0.01	<0.001	<0.001	<0.001	<0.002	<0.001	<0.001	<0.001	<0.001	<0.01	<0.002	<0.0002
MWC	2200 <	5	0.04	0.002	<0.01	0.08	<0.0001	0.004	0.003	<0.005	<0.001	<0.001	<0.00005	0.005	ND	<0.01	<0.001	<0.001	<0.001	<0.002	<0.001	<0.001	<0.001	<0.001	<0.01	<0.002	<0.0002
MWD	4800	74	0.042	0.009	<0.01	0.68	<0.0001	0.008	<0.001	<0.005	0.018	<0.001	<0.00005	0.007	0.012	2.249	0.005	<0.001	<0.001	<0.002	<0.001	<0.001	<0.001	<0.001	<0.01	<0.002	<0.0002
MWE	1800	26	<0.005	0.003	<0.01	0.069	<0.0001	0.001	<0.001	<0.005	< 0.001	<0.001	<0.00005	0.005	ND	<0.01	<0.001	<0.001	<0.001	<0.002	<0.001	<0.001	<0.001	< 0.001	<0.01	<0.002	<0.0002

Attachment 2 NATA Accredited Laboratory Results

Envirolab Services Pty Ltd

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 305662

Client Details	
Client	Engage Environmental Services
Attention	Stephen Challinor
Address	113 Reservoir Rd, GLENDALE, NSW, 2285

Sample Details	
Your Reference	E04-0922-UHSC
Number of Samples	5 Water
Date samples received	14/09/2022
Date completed instructions received	14/09/2022

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details									
Date results requested by	21/09/2022								
Date of Issue	29/09/2022								
Reissue Details	This report replaces R00 created on 21/09/2022 due to: revised report with additional results (Co).								
NATA Accreditation Number 2901. This document shall not be reproduced except in full.									
Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *									

Results Approved By

Greta Petzold, Assistant Operation Manager Liam Timmins, Organic Instruments Team Leader Nick Sarlamis, Assistant Operation Manager **Authorised By**

Nancy Zhang, Laboratory Manager

VHC's in water						
Our Reference		305662-1	305662-2	305662-3	305662-4	305662-5
Your Reference	UNITS	MWA	MWB	MWC	MWD	MWE
Date Sampled		13/09/2022	13/09/2022	13/09/2022	13/09/2022	13/09/2022
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	16/09/2022	16/09/2022	16/09/2022	16/09/2022	16/09/2022
Date analysed	-	19/09/2022	19/09/2022	19/09/2022	19/09/2022	19/09/2022
Dichlorodifluoromethane	μg/L	<10	<10	<10	<10	<10
Chloromethane	μg/L	<10	<10	<10	<10	<10
Vinyl Chloride	μg/L	<10	<10	<10	<10	<10
Bromomethane	μg/L	<10	<10	<10	<10	<10
Chloroethane	μg/L	<10	<10	<10	<10	<10
Trichlorofluoromethane	μg/L	<10	<10	<10	<10	<10
1,1-Dichloroethene	μg/L	<1	<1	<1	<1	<1
Trans-1,2-dichloroethene	μg/L	<1	<1	<1	<1	<1
1,1-dichloroethane	μg/L	<1	<1	<1	<1	<1
Cis-1,2-dichloroethene	μg/L	<1	<1	<1	<1	<1
Bromochloromethane	μg/L	<1	<1	<1	<1	<1
Chloroform	μg/L	<1	<1	<1	<1	<1
2,2-dichloropropane	μg/L	<1	<1	<1	<1	<1
1,2-dichloroethane	μg/L	<1	<1	<1	<1	<1
1,1,1-trichloroethane	μg/L	<1	<1	<1	<1	<1
1,1-dichloropropene	μg/L	<1	<1	<1	<1	<1
Carbon tetrachloride	μg/L	<1	<1	<1	<1	<1
Dibromomethane	μg/L	<1	<1	<1	<1	<1
1,2-dichloropropane	μg/L	<1	<1	<1	<1	<1
Trichloroethene	μg/L	<1	<1	<1	<1	<1
Bromodichloromethane	μg/L	<1	<1	<1	<1	<1
trans-1,3-dichloropropene	μg/L	<1	<1	<1	<1	<1
cis-1,3-dichloropropene	μg/L	<1	<1	<1	<1	<1
1,1,2-trichloroethane	μg/L	<1	<1	<1	<1	<1
1,3-dichloropropane	μg/L	<1	<1	<1	<1	<1
Dibromochloromethane	μg/L	<1	<1	<1	<1	<1
1,2-dibromoethane	μg/L	<1	<1	<1	<1	<1
Tetrachloroethene	μg/L	<1	<1	<1	<1	<1
1,1,1,2-tetrachloroethane	μg/L	<1	<1	<1	<1	<1
Chlorobenzene	μg/L	<1	<1	<1	23	<1
Bromoform	μg/L	<1	<1	<1	<1	<1
1,1,2,2-tetrachloroethane	μg/L	<1	<1	<1	<1	<1
1,2,3-trichloropropane	μg/L	<1	<1	<1	<1	<1
Bromobenzene	μg/L	<1	<1	<1	<1	<1

VHC's in water						
Our Reference		305662-1	305662-2	305662-3	305662-4	305662-5
Your Reference	UNITS	MWA	MWB	MWC	MWD	MWE
Date Sampled		13/09/2022	13/09/2022	13/09/2022	13/09/2022	13/09/2022
Type of sample		Water	Water	Water	Water	Water
2-chlorotoluene	μg/L	<1	<1	<1	<1	<1
4-chlorotoluene	μg/L	<1	<1	<1	<1	<1
1,3-dichlorobenzene	μg/L	<1	<1	<1	<1	<1
1,4-dichlorobenzene	μg/L	<1	<1	<1	8	<1
1,2-dichlorobenzene	μg/L	<1	<1	<1	<1	<1
1,2-dibromo-3-chloropropane	μg/L	<1	<1	<1	<1	<1
1,2,4-trichlorobenzene	μg/L	<1	<1	<1	<1	<1
Hexachlorobutadiene	μg/L	<1	<1	<1	<1	<1
1,2,3-trichlorobenzene	μg/L	<1	<1	<1	<1	<1
Surrogate Dibromofluoromethane	%	87	91	89	87	87
Surrogate toluene-d8	%	99	101	101	100	100
Surrogate 4-BFB	%	102	103	103	102	102

vTRH(C6-C10)/BTEXN in Water						
Our Reference		305662-1	305662-2	305662-3	305662-4	305662-5
Your Reference	UNITS	MWA	MWB	MWC	MWD	MWE
Date Sampled		13/09/2022	13/09/2022	13/09/2022	13/09/2022	13/09/2022
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	16/09/2022	16/09/2022	16/09/2022	16/09/2022	16/09/2022
Date analysed	-	19/09/2022	19/09/2022	19/09/2022	19/09/2022	19/09/2022
TRH C ₆ - C ₉	μg/L	<10	<10	<10	48	<10
TRH C ₆ - C ₁₀	μg/L	<10	<10	<10	49	<10
TRH C ₆ - C ₁₀ less BTEX (F1)	μg/L	<10	<10	<10	44	<10
Benzene	μg/L	<1	<1	<1	5	<1
Toluene	μg/L	<1	<1	<1	<1	<1
Ethylbenzene	μg/L	<1	<1	<1	<1	<1
m+p-xylene	μg/L	<2	<2	<2	<2	<2
o-xylene	μg/L	<1	<1	<1	<1	<1
Naphthalene	μg/L	<1	<1	<1	11	<1
Surrogate Dibromofluoromethane	%	87	91	89	87	87
Surrogate toluene-d8	%	99	101	101	100	100
Surrogate 4-BFB	%	102	103	103	102	102

svTRH (C10-C40) in Water						
Our Reference		305662-1	305662-2	305662-3	305662-4	305662-5
Your Reference	UNITS	MWA	MWB	MWC	MWD	MWE
Date Sampled		13/09/2022	13/09/2022	13/09/2022	13/09/2022	13/09/2022
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	16/09/2022	16/09/2022	16/09/2022	16/09/2022	16/09/2022
Date analysed	-	16/09/2022	16/09/2022	16/09/2022	16/09/2022	16/09/2022
TRH C ₁₀ - C ₁₄	μg/L	<50	<50	<50	350	<50
TRH C ₁₅ - C ₂₈	μg/L	<100	<100	<100	1,600	<100
TRH C ₂₉ - C ₃₆	μg/L	<100	<100	<100	230	<100
Total +ve TRH (C10-C36)	μg/L	<50	<50	<50	2,200	<50
TRH >C ₁₀ - C ₁₆	μg/L	<50	<50	<50	470	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	μg/L	<50	<50	<50	460	<50
TRH >C ₁₆ - C ₃₄	μg/L	<100	<100	<100	1,600	<100
TRH >C ₃₄ - C ₄₀	μg/L	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	μg/L	<50	<50	<50	2,100	<50
Surrogate o-Terphenyl	%	81	83	84	112	84

PAHs in Water						
Our Reference		305662-1	305662-2	305662-3	305662-4	305662-5
Your Reference	UNITS	MWA	MWB	MWC	MWD	MWE
Date Sampled		13/09/2022	13/09/2022	13/09/2022	13/09/2022	13/09/2022
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	16/09/2022	16/09/2022	16/09/2022	16/09/2022	16/09/2022
Date analysed	-	18/09/2022	18/09/2022	18/09/2022	18/09/2022	18/09/2022
Naphthalene	μg/L	<1	<1	<1	12	<1
Acenaphthylene	μg/L	<1	<1	<1	<1	<1
Acenaphthene	μg/L	<1	<1	<1	<1	<1
Fluorene	μg/L	<1	<1 <1		<1	<1
Phenanthrene	μg/L	<1	<1 <1		<1	<1
Anthracene	μg/L	<1	<1	<1	<1	<1
Fluoranthene	μg/L	<1	<1	<1	<1	<1
Pyrene	μg/L	<1	<1	<1	<1	<1
Benzo(a)anthracene	μg/L	<1	<1	<1	<1	<1
Chrysene	μg/L	<1	<1	<1	<1	<1
Benzo(b,j+k)fluoranthene	μg/L	<2	<2	<2	<2	<2
Benzo(a)pyrene	μg/L	<1	<1	<1	<1	<1
Indeno(1,2,3-c,d)pyrene	μg/L	<1	<1	<1	<1	<1
Dibenzo(a,h)anthracene	μg/L	<1	<1	<1	<1	<1
Benzo(g,h,i)perylene	μg/L	<1	<1	<1	<1	<1
Benzo(a)pyrene TEQ	μg/L	<5	<5	<5	<5	<5
Total +ve PAH's	μg/L	NIL (+)VE	NIL (+)VE	NIL (+)VE	12	NIL (+)VE
Surrogate p-Terphenyl-d14	%	92	87	92	83	105

Organochlorine Pesticides in Water						
Our Reference		305662-1	305662-2	305662-3	305662-4	305662-5
Your Reference	UNITS	MWA	MWB	MWC	MWD	MWE
Date Sampled		13/09/2022	13/09/2022	13/09/2022	13/09/2022	13/09/2022
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	16/09/2022	16/09/2022	16/09/2022	16/09/2022	16/09/2022
Date analysed	-	18/09/2022	18/09/2022	18/09/2022	18/09/2022	18/09/2022
alpha-BHC	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
нсв	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
beta-BHC	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
gamma-BHC	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Heptachlor	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
delta-BHC	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Aldrin	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Heptachlor Epoxide	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
gamma-Chlordane	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
alpha-Chlordane	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Endosulfan I	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
pp-DDE	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Dieldrin	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Endrin	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Endosulfan II	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
pp-DDD	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Endrin Aldehyde	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
pp-DDT	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Endosulfan Sulphate	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Methoxychlor	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Surrogate TCMX	%	86	89	83	87	92

Envirolab Reference: 305662

OP Pesticides in Water						
Our Reference		305662-1	305662-2	305662-3	305662-4	305662-5
Your Reference	UNITS	MWA	MWB	MWC	MWD	MWE
Date Sampled		13/09/2022	13/09/2022	13/09/2022	13/09/2022	13/09/2022
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	16/09/2022	16/09/2022	16/09/2022	16/09/2022	16/09/2022
Date analysed	-	18/09/2022	18/09/2022	18/09/2022	18/09/2022	18/09/2022
Dichlorvos	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Dimethoate	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Diazinon	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Chlorpyriphos-methyl	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Ronnel	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Fenitrothion	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Malathion	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Chlorpyriphos	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Parathion	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Bromophos ethyl	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Ethion	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Azinphos-methyl (Guthion)	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Surrogate TCMX	%	86	89	83	87	92

PCBs in Water						
Our Reference		305662-1	305662-2	305662-3	305662-4	305662-5
Your Reference	UNITS	MWA	MWB	MWC	MWD	MWE
Date Sampled		13/09/2022	13/09/2022	13/09/2022	13/09/2022	13/09/2022
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	16/09/2022	16/09/2022	16/09/2022	16/09/2022	16/09/2022
Date analysed	-	18/09/2022	18/09/2022	18/09/2022	18/09/2022	18/09/2022
Aroclor 1016	μg/L	<2	<2	<2	<2	<2
Aroclor 1221	μg/L	<2	<2	<2 <2		<2
Aroclor 1232	μg/L	<2	<2	<2	<2	<2
Aroclor 1242	μg/L	<2	<2	<2	<2	<2
Aroclor 1248	μg/L	<2	<2	<2	<2	<2
Aroclor 1254	μg/L	<2	<2	<2	<2	<2
Aroclor 1260	μg/L	<2	<2	<2	<2	<2
Surrogate TCMX	%	86	89	83	87	92

Total Phenolics in Water						
Our Reference		305662-1	305662-2	305662-3	305662-4	305662-5
Your Reference	UNITS	MWA	MWB	MWC	MWD	MWE
Date Sampled		13/09/2022	13/09/2022	13/09/2022	13/09/2022	13/09/2022
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	19/09/2022	19/09/2022	19/09/2022	19/09/2022	19/09/2022
Date analysed	-	19/09/2022	19/09/2022	19/09/2022	19/09/2022	19/09/2022
Total Phenolics (as Phenol)	mg/L	<0.05	<0.05	<0.05	<0.05	<0.05

HM in water - dissolved						
Our Reference		305662-1	305662-2	305662-3	305662-4	305662-5
Your Reference	UNITS	MWA	MWB	MWC	MWD	MWE
Date Sampled		13/09/2022	13/09/2022	13/09/2022	13/09/2022	13/09/2022
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	15/09/2022	15/09/2022	15/09/2022	15/09/2022	15/09/2022
Date analysed	-	15/09/2022	15/09/2022	15/09/2022	15/09/2022	15/09/2022
Arsenic-Dissolved	μg/L	1	1	2	9	3
Cadmium-Dissolved	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Chromium-Dissolved	μg/L	4	4	<1	18	<1
Copper-Dissolved	μg/L	2	2	2 3		<1
Lead-Dissolved	μg/L	<1	<1	<1	<1	<1
Mercury-Dissolved	μg/L	0.2	0.07	<0.05	<0.05	<0.05
Nickel-Dissolved	μg/L	6	5	25	9	7
Zinc-Dissolved	μg/L	13	9	5	7	5
Iron-Dissolved	μg/L	<10	<10	50	750	2,200
Manganese-Dissolved	μg/L	<5	14	680	610	1,000
Aluminium-Dissolved	μg/L	<10	<10	<10	<10	<10
Barium-Dissolved	μg/L	540	390	80	680	69
Cobalt-Dissolved	μg/L	<1	<1	4	8	1

Ion Balance						
Our Reference		305662-1	305662-2	305662-3	305662-4	305662-5
Your Reference	UNITS	MWA	MWB	MWC	MWD	MWE
Date Sampled		13/09/2022	13/09/2022	13/09/2022	13/09/2022	13/09/2022
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	14/09/2022	14/09/2022	14/09/2022	14/09/2022	14/09/2022
Date analysed	-	14/09/2022	14/09/2022	14/09/2022	14/09/2022	14/09/2022
Calcium - Dissolved	mg/L	550	470	61	190	57
Potassium - Dissolved	mg/L	3	3 1		82	2
Sodium - Dissolved	mg/L	1,800	1,400	500	810	380
Magnesium - Dissolved	mg/L	950	570	110	150	54
Hardness	mgCaCO 3 /L	5,300	3,500	590	1,100	360
Hydroxide Alkalinity (OH⁻) as CaCO₃	mg/L	<5	<5	<5	<5	<5
Bicarbonate Alkalinity as CaCO ₃	mg/L	510	440	600	1,500	1,000
Carbonate Alkalinity as CaCO ₃	mg/L	<5	<5	<5	<5	<5
Total Alkalinity as CaCO₃	mg/L	510	440	600	1,500	1,000
Sulphate, SO4	mg/L	50	77	170	85	18
Chloride, Cl	mg/L	6,900	4,700	840	1,400	260
Ionic Balance	%	-5.0	-4.0	-8.0	-11	-9.0

Miscellaneous Inorganics						
Our Reference		305662-1	305662-2	305662-3	305662-4	305662-5
Your Reference	UNITS	MWA	MWB	MWC	MWD	MWE
Date Sampled		13/09/2022	13/09/2022	13/09/2022	13/09/2022	13/09/2022
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	14/09/2022	14/09/2022	14/09/2022	14/09/2022	14/09/2022
Date analysed	-	14/09/2022	14/09/2022	14/09/2022	14/09/2022	14/09/2022
Hexavalent Chromium, Cr ⁶⁺	mg/L	<0.005	<0.005	<0.005	<0.005	<0.005
Ammonia as N in water	mg/L	0.049	0.065	0.050	140	0.068
BOD	mg/L	<5	<5	<5	74	26
Fluoride, F	mg/L	0.1	0.2	0.3	0.3	0.3
Total Organic Carbon	mg/L	5	5	75	220	150
Total Dissolved Solids (grav)	mg/L	14,000	10,000	2,200	4,800	1,800
рН	pH Units	6.2	6.8	7.2	7.5	7.1
Electrical Conductivity	μS/cm	17,000	13,000	3,600	6,400	2,300
Nitrate as N in water	mg/L	0.51	0.32	1.2	0.056	<0.005
Phosphate as P in water	mg/L	0.071	0.02	0.04	0.42	<0.005

Envirolab Reference: 305662

Method ID	Methodology Summary
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-002	Conductivity and Salinity - measured using a conductivity cell at 25°C in accordance with APHA latest edition 2510 and Rayment & Lyons.
Inorg-006	Alkalinity - determined titrimetrically in accordance with APHA latest edition, 2320-B.
Inorg-018	Total Dissolved Solids - determined gravimetrically. The solids are dried at 180+/-10°C.
Inorg-024	Hexavalent Chromium (Cr6+) - determined colourimetrically. Waters samples are filtered on receipt prior to analysis.
Inorg-026	Fluoride determined by ion selective electrode (ISE) in accordance with APHA latest edition, 4500-F-C.
Inorg-031	Total Phenolics by segmented flow analyser (in line distillation with colourimetric finish). Solids are extracted in a caustic media prior to analysis.
Inorg-040	The concentrations of the major ions (mg/L) are converted to milliequivalents and summed. The ionic balance should be within +/- 15% ie total anions = total cations +/-15%.
Inorg-055	Nitrate - determined colourimetrically. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a water extraction.
Inorg-057	Ammonia - determined colourimetrically, based on APHA latest edition 4500-NH3 F. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a KCI extraction.
Inorg-060	Phosphate determined colourimetrically based on EPA365.1 and APHA latest edition 4500 P E. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a water extraction.
Inorg-079	TOC determined using a TOC analyser using the combustion method. Dissolved requires filtering prior to determination. Analysis using APHA latest edition 5310B.
Inorg-081	Anions - a range of Anions are determined by Ion Chromatography, in accordance with APHA latest edition, 4110-B. Waters samples are filtered on receipt prior to analysis. Alternatively determined by colourimetry/turbidity using Discrete Analyser.
Inorg-091	BOD - Analysed in accordance with APHA latest edition 5210 D and in house INORG-091.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Metals-022	Determination of various metals by ICP-MS.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-021	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS.

Method ID	Methodology Summary
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.
Org-023	Water samples are analysed directly by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.

Envirolab Reference: 305662
Revision No: R01
Page | 15 of 30

QUALI	TY CONTROL	.: VHC's i	n water			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			16/09/2022	2	16/09/2022	20/09/2022		16/09/2022	
Date analysed	-			19/09/2022	2	19/09/2022	21/09/2022		19/09/2022	
Dichlorodifluoromethane	μg/L	10	Org-023	<10	2	<10	<10	0		
Chloromethane	μg/L	10	Org-023	<10	2	<10	<10	0		
Vinyl Chloride	μg/L	10	Org-023	<10	2	<10	<10	0		
Bromomethane	μg/L	10	Org-023	<10	2	<10	<10	0		
Chloroethane	μg/L	10	Org-023	<10	2	<10	<10	0		
Trichlorofluoromethane	μg/L	10	Org-023	<10	2	<10	<10	0		
1,1-Dichloroethene	μg/L	1	Org-023	<1	2	<1	<1	0		
Trans-1,2-dichloroethene	μg/L	1	Org-023	<1	2	<1	<1	0		
1,1-dichloroethane	μg/L	1	Org-023	<1	2	<1	<1	0	97	
Cis-1,2-dichloroethene	μg/L	1	Org-023	<1	2	<1	<1	0		
Bromochloromethane	μg/L	1	Org-023	<1	2	<1	<1	0		
Chloroform	μg/L	1	Org-023	<1	2	<1	<1	0	95	
2,2-dichloropropane	μg/L	1	Org-023	<1	2	<1	<1	0		
1,2-dichloroethane	μg/L	1	Org-023	<1	2	<1	<1	0	116	
1,1,1-trichloroethane	μg/L	1	Org-023	<1	2	<1	<1	0	102	
1,1-dichloropropene	μg/L	1	Org-023	<1	2	<1	<1	0		
Carbon tetrachloride	μg/L	1	Org-023	<1	2	<1	<1	0		
Dibromomethane	μg/L	1	Org-023	<1	2	<1	<1	0		
1,2-dichloropropane	μg/L	1	Org-023	<1	2	<1	<1	0		
Trichloroethene	μg/L	1	Org-023	<1	2	<1	<1	0	116	
Bromodichloromethane	μg/L	1	Org-023	<1	2	<1	<1	0	93	
trans-1,3-dichloropropene	μg/L	1	Org-023	<1	2	<1	<1	0		
cis-1,3-dichloropropene	μg/L	1	Org-023	<1	2	<1	<1	0		
1,1,2-trichloroethane	μg/L	1	Org-023	<1	2	<1	<1	0		
1,3-dichloropropane	μg/L	1	Org-023	<1	2	<1	<1	0		
Dibromochloromethane	μg/L	1	Org-023	<1	2	<1	<1	0	91	
1,2-dibromoethane	μg/L	1	Org-023	<1	2	<1	<1	0		
Tetrachloroethene	μg/L	1	Org-023	<1	2	<1	<1	0	89	
1,1,1,2-tetrachloroethane	μg/L	1	Org-023	<1	2	<1	<1	0		
Chlorobenzene	μg/L	1	Org-023	<1	2	<1	<1	0		
Bromoform	μg/L	1	Org-023	<1	2	<1	<1	0		
1,1,2,2-tetrachloroethane	μg/L	1	Org-023	<1	2	<1	<1	0		
1,2,3-trichloropropane	μg/L	1	Org-023	<1	2	<1	<1	0		
Bromobenzene	μg/L	1	Org-023	<1	2	<1	<1	0		
2-chlorotoluene	μg/L	1	Org-023	<1	2	<1	<1	0		
4-chlorotoluene	μg/L	1	Org-023	<1	2	<1	<1	0		
1,3-dichlorobenzene	μg/L	1	Org-023	<1	2	<1	<1	0		
1,4-dichlorobenzene	μg/L	1	Org-023	<1	2	<1	<1	0		

QUALITY	CONTROL	.: VHC's i	n water			Du	Duplicate Spike Recove			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
1,2-dichlorobenzene	μg/L	1	Org-023	<1	2	<1	<1	0	[NT]	
1,2-dibromo-3-chloropropane	μg/L	1	Org-023	<1	2	<1	<1	0	[NT]	
1,2,4-trichlorobenzene	μg/L	1	Org-023	<1	2	<1	<1	0	[NT]	
Hexachlorobutadiene	μg/L	1	Org-023	<1	2	<1	<1	0	[NT]	
1,2,3-trichlorobenzene	μg/L	1	Org-023	<1	2	<1	<1	0	[NT]	
Surrogate Dibromofluoromethane	%		Org-023	86	2	91	107	16	86	
Surrogate toluene-d8	%		Org-023	98	2	101	102	1	100	
Surrogate 4-BFB	%		Org-023	100	2	103	101	2	101	

QUALITY CONTI	ROL: vTRH(C6-C10)/E	BTEXN in Water			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			16/09/2022	2	16/09/2022	20/09/2022		16/09/2022	
Date analysed	-			19/09/2022	2	19/09/2022	21/09/2022		19/09/2022	
TRH C ₆ - C ₉	μg/L	10	Org-023	<10	2	<10	<10	0	107	
TRH C ₆ - C ₁₀	μg/L	10	Org-023	<10	2	<10	<10	0	107	
Benzene	μg/L	1	Org-023	<1	2	<1	<1	0	101	
Toluene	μg/L	1	Org-023	<1	2	<1	<1	0	98	
Ethylbenzene	μg/L	1	Org-023	<1	2	<1	<1	0	101	
m+p-xylene	μg/L	2	Org-023	<2	2	<2	<2	0	118	
o-xylene	μg/L	1	Org-023	<1	2	<1	<1	0	116	
Naphthalene	μg/L	1	Org-023	<1	2	<1	<1	0	[NT]	
Surrogate Dibromofluoromethane	%		Org-023	86	2	91	107	16	86	
Surrogate toluene-d8	%		Org-023	98	2	101	102	1	100	
Surrogate 4-BFB	%		Org-023	100	2	103	101	2	101	

QUALITY CON	ITROL: svTF	RH (C10-0	C40) in Water			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	305662-2
Date extracted	-			16/09/2022	1	16/09/2022	16/09/2022		16/09/2022	16/09/2022
Date analysed	-			16/09/2022	1	16/09/2022	16/09/2022		16/09/2022	16/09/2022
TRH C ₁₀ - C ₁₄	μg/L	50	Org-020	<50	1	<50	<50	0	90	94
TRH C ₁₅ - C ₂₈	μg/L	100	Org-020	<100	1	<100	<100	0	92	95
TRH C ₂₉ - C ₃₆	μg/L	100	Org-020	<100	1	<100	<100	0	86	83
TRH >C ₁₀ - C ₁₆	μg/L	50	Org-020	<50	1	<50	<50	0	90	94
TRH >C ₁₆ - C ₃₄	μg/L	100	Org-020	<100	1	<100	<100	0	92	95
TRH >C ₃₄ - C ₄₀	μg/L	100	Org-020	<100	1	<100	<100	0	86	83
Surrogate o-Terphenyl	%		Org-020	89	1	81	83	2	90	110

QUAL	ITY CONTROL	_: PAHs ir	n Water			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	305662-3
Date extracted	-			16/09/2022	1	16/09/2022	16/09/2022		16/09/2022	16/09/2022
Date analysed	-			18/09/2022	1	18/09/2022	18/09/2022		18/09/2022	18/09/2022
Naphthalene	μg/L	1	Org-022/025	<1	1	<1	<1	0	97	107
Acenaphthylene	μg/L	1	Org-022/025	<1	1	<1	<1	0	[NT]	[NT]
Acenaphthene	μg/L	1	Org-022/025	<1	1	<1	<1	0	91	99
Fluorene	μg/L	1	Org-022/025	<1	1	<1	<1	0	97	107
Phenanthrene	μg/L	1	Org-022/025	<1	1	<1	<1	0	104	112
Anthracene	μg/L	1	Org-022/025	<1	1	<1	<1	0	[NT]	[NT]
Fluoranthene	μg/L	1	Org-022/025	<1	1	<1	<1	0	94	100
Pyrene	μg/L	1	Org-022/025	<1	1	<1	<1	0	97	105
Benzo(a)anthracene	μg/L	1	Org-022/025	<1	1	<1	<1	0	[NT]	[NT]
Chrysene	μg/L	1	Org-022/025	<1	1	<1	<1	0	95	105
Benzo(b,j+k)fluoranthene	μg/L	2	Org-022/025	<2	1	<2	<2	0	[NT]	[NT]
Benzo(a)pyrene	μg/L	1	Org-022/025	<1	1	<1	<1	0	104	98
Indeno(1,2,3-c,d)pyrene	μg/L	1	Org-022/025	<1	1	<1	<1	0	[NT]	[NT]
Dibenzo(a,h)anthracene	μg/L	1	Org-022/025	<1	1	<1	<1	0	[NT]	[NT]
Benzo(g,h,i)perylene	μg/L	1	Org-022/025	<1	1	<1	<1	0	[NT]	[NT]
Surrogate p-Terphenyl-d14	%		Org-022/025	100	1	92	91	1	89	87

QUALITY CON	TROL: Organoc	hlorine P	esticides in Water			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	305662-3
Date extracted	-			16/09/2022	1	16/09/2022	16/09/2022		16/09/2022	16/09/2022
Date analysed	-			18/09/2022	1	18/09/2022	18/09/2022		18/09/2022	18/09/2022
alpha-BHC	μg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	94	104
НСВ	μg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	[NT]	[NT]
beta-BHC	μg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	89	103
gamma-BHC	μg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	[NT]	[NT]
Heptachlor	μg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	73	85
delta-BHC	μg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	[NT]	[NT]
Aldrin	μg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	99	111
Heptachlor Epoxide	μg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	98	108
gamma-Chlordane	μg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	[NT]	[NT]
alpha-Chlordane	μg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	[NT]	[NT]
Endosulfan I	μg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	[NT]	[NT]
pp-DDE	μg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	100	111
Dieldrin	μg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	108	124
Endrin	μg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	82	92
Endosulfan II	μg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	[NT]	[NT]
pp-DDD	μg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	86	100
Endrin Aldehyde	μg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	[NT]	[NT]
pp-DDT	μg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	[NT]	[NT]
Endosulfan Sulphate	μg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	86	98
Methoxychlor	μg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	[NT]	[NT]
Surrogate TCMX	%		Org-022/025	91	1	86	91	6	88	89

QUALITY C	ONTROL: OF	Pesticid	es in Water			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	305662-3
Date extracted	-			16/09/2022	1	16/09/2022	16/09/2022		16/09/2022	16/09/2022
Date analysed	-			18/09/2022	1	18/09/2022	18/09/2022		18/09/2022	18/09/2022
Dichlorvos	μg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	114	124
Dimethoate	μg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	[NT]	[NT]
Diazinon	μg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	[NT]	[NT]
Chlorpyriphos-methyl	μg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	[NT]	[NT]
Ronnel	μg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	65	73
Fenitrothion	μg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	65	65
Malathion	μg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	77	85
Chlorpyriphos	μg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	86	98
Parathion	μg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	62	64
Bromophos ethyl	μg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	[NT]	[NT]
Ethion	μg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	64	80
Azinphos-methyl (Guthion)	μg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	[NT]	[NT]
Surrogate TCMX	%		Org-022/025	91	1	86	91	6	88	89

Envirolab Reference: 305662

QUALITY	CONTROL	.: PCBs ir	n Water			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	305662-3
Date extracted	-			16/09/2022	1	16/09/2022	16/09/2022		16/09/2022	16/09/2022
Date analysed	-			18/09/2022	1	18/09/2022	18/09/2022		18/09/2022	18/09/2022
Aroclor 1016	μg/L	2	Org-021	<2	1	<2	<2	0	[NT]	[NT]
Aroclor 1221	μg/L	2	Org-021	<2	1	<2	<2	0	[NT]	[NT]
Aroclor 1232	μg/L	2	Org-021	<2	1	<2	<2	0	[NT]	[NT]
Aroclor 1242	μg/L	2	Org-021	<2	1	<2	<2	0	[NT]	[NT]
Aroclor 1248	μg/L	2	Org-021	<2	1	<2	<2	0	[NT]	[NT]
Aroclor 1254	μg/L	2	Org-021	<2	1	<2	<2	0	93	80
Aroclor 1260	μg/L	2	Org-021	<2	1	<2	<2	0	[NT]	[NT]
Surrogate TCMX	%		Org-021	91	1	86	91	6	88	89

QUALITY CO	NTROL: Tot	al Phenol	lics in Water		Duplicate				Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	305662-2
Date extracted	-			19/09/2022	1	19/09/2022	19/09/2022		19/09/2022	19/09/2022
Date analysed	-			19/09/2022	1	19/09/2022	19/09/2022		19/09/2022	19/09/2022
Total Phenolics (as Phenol)	mg/L	0.05	Inorg-031	<0.05	1	<0.05	<0.05	0	105	76

Envirolab Reference: 305662

QUALITY CC	NTROL: HN	l in water	- dissolved			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
Date prepared	-			15/09/2022	1	15/09/2022	15/09/2022		15/09/2022	
Date analysed	-			15/09/2022	1	15/09/2022	15/09/2022		15/09/2022	
Arsenic-Dissolved	μg/L	1	Metals-022	<1	1	1	[NT]		99	
Cadmium-Dissolved	μg/L	0.1	Metals-022	<0.1	1	<0.1	[NT]		100	
Chromium-Dissolved	μg/L	1	Metals-022	<1	1	4	[NT]		98	
Copper-Dissolved	μg/L	1	Metals-022	<1	1	2	[NT]		98	
Lead-Dissolved	μg/L	1	Metals-022	<1	1	<1	[NT]		99	
Mercury-Dissolved	μg/L	0.05	Metals-021	<0.05	1	0.2	0.2	0	108	
Nickel-Dissolved	μg/L	1	Metals-022	<1	1	6	[NT]		97	
Zinc-Dissolved	μg/L	1	Metals-022	<1	1	13	[NT]		100	
Iron-Dissolved	μg/L	10	Metals-022	<10	1	<10	[NT]		99	
Manganese-Dissolved	μg/L	5	Metals-022	<5	1	<5	[NT]		101	
Aluminium-Dissolved	μg/L	10	Metals-022	<10	1	<10	[NT]		94	
Barium-Dissolved	μg/L	1	Metals-022	<1	1	540	[NT]		99	
Cobalt-Dissolved	μg/L	1	Metals-022	<1	1	<1	[NT]		98	

QUALITY CO	ONTROL: HI	/l in water	- dissolved			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	4	15/09/2022	15/09/2022			[NT]
Date analysed	-			[NT]	4	15/09/2022	15/09/2022			[NT]
Arsenic-Dissolved	μg/L	1	Metals-022	[NT]	4	9	8	12		[NT]
Cadmium-Dissolved	μg/L	0.1	Metals-022	[NT]	4	<0.1	<0.1	0		[NT]
Chromium-Dissolved	μg/L	1	Metals-022	[NT]	4	18	16	12		[NT]
Copper-Dissolved	μg/L	1	Metals-022	[NT]	4	<1	<1	0		[NT]
Lead-Dissolved	μg/L	1	Metals-022	[NT]	4	<1	<1	0		[NT]
Mercury-Dissolved	μg/L	0.05	Metals-021	[NT]	4	<0.05	[NT]			[NT]
Nickel-Dissolved	μg/L	1	Metals-022	[NT]	4	9	9	0		[NT]
Zinc-Dissolved	μg/L	1	Metals-022	[NT]	4	7	6	15		[NT]
Iron-Dissolved	μg/L	10	Metals-022	[NT]	4	750	730	3		[NT]
Manganese-Dissolved	μg/L	5	Metals-022	[NT]	4	610	580	5		[NT]
Aluminium-Dissolved	μg/L	10	Metals-022	[NT]	4	<10	<10	0		[NT]
Barium-Dissolved	μg/L	1	Metals-022	[NT]	4	680	650	5		[NT]
Cobalt-Dissolved	μg/L	1	Metals-022	[NT]	4	8	8	0		[NT]

QUAL	ITY CONTRO	L: Ion Ba	lance			Du	plicate		Spike Red	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date prepared	-			14/09/2022	1	14/09/2022	14/09/2022		14/09/2022	
Date analysed	-			14/09/2022	1	14/09/2022	14/09/2022		14/09/2022	
Calcium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	550	[NT]		99	
Potassium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	3	[NT]		98	
Sodium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	1800	[NT]		92	
Magnesium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	950	[NT]		100	
Hardness	mgCaCO 3/L	3	Metals-020	[NT]	1	5300	[NT]		[NT]	
Hydroxide Alkalinity (OH⁻) as CaCO₃	mg/L	5	Inorg-006	<5	1	<5	[NT]		[NT]	
Bicarbonate Alkalinity as CaCO ₃	mg/L	5	Inorg-006	<5	1	510	[NT]		[NT]	
Carbonate Alkalinity as CaCO ₃	mg/L	5	Inorg-006	<5	1	<5	[NT]		[NT]	
Total Alkalinity as CaCO₃	mg/L	5	Inorg-006	<5	1	510	[NT]		100	
Sulphate, SO4	mg/L	1	Inorg-081	<1	1	50	49	2	94	
Chloride, Cl	mg/L	1	Inorg-081	<1	1	6900	7000	1	98	
Ionic Balance	%		Inorg-040	[NT]	1	-5.0	[NT]		[NT]	

QUALITY COI	NTROL: Mis	cellaneou	s Inorganics			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	305662-2
Date prepared	-			14/09/2022	1	14/09/2022	14/09/2022		14/09/2022	14/09/2022
Date analysed	-			14/09/2022	1	14/09/2022	14/09/2022		14/09/2022	14/09/2022
Hexavalent Chromium, Cr6+	mg/L	0.005	Inorg-024	<0.005	1	<0.005	<0.005	0	102	101
Ammonia as N in water	mg/L	0.005	Inorg-057	<0.005	1	0.049	0.034	36	107	103
BOD	mg/L	5	Inorg-091	<5	1	<5	[NT]		80	[NT]
Fluoride, F	mg/L	0.1	Inorg-026	<0.1	1	0.1	0.1	0	103	92
Total Organic Carbon	mg/L	1	Inorg-079	<1	1	5	5	0	95	123
Total Dissolved Solids (grav)	mg/L	5	Inorg-018	<5	1	14000	[NT]		115	[NT]
рН	pH Units		Inorg-001	[NT]	1	6.2	[NT]		98	[NT]
Electrical Conductivity	μS/cm	1	Inorg-002	<1	1	17000	[NT]		95	[NT]
Nitrate as N in water	mg/L	0.005	Inorg-055	<0.005	1	0.51	0.52	2	101	92
Phosphate as P in water	mg/L	0.005	Inorg-060	<0.005	1	0.071	0.072	1	104	95

QUALITY COI	NTROL: Mis	cellaneou	s Inorganics			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	2	14/09/2022	14/09/2022		[NT]	
Date analysed	-			[NT]	2	14/09/2022	14/09/2022		[NT]	
Hexavalent Chromium, Cr6+	mg/L	0.005	Inorg-024	[NT]	2	<0.005	[NT]		[NT]	
Ammonia as N in water	mg/L	0.005	Inorg-057	[NT]	2	0.065	[NT]		[NT]	
BOD	mg/L	5	Inorg-091	[NT]	2	<5	[NT]		[NT]	
Fluoride, F	mg/L	0.1	Inorg-026	[NT]	2	0.2	[NT]		[NT]	
Total Organic Carbon	mg/L	1	Inorg-079	[NT]	2	5	[NT]		[NT]	
Total Dissolved Solids (grav)	mg/L	5	Inorg-018	[NT]	2	10000	9800	2	[NT]	
pH	pH Units		Inorg-001	[NT]	2	6.8	[NT]		[NT]	
Electrical Conductivity	μS/cm	1	Inorg-002	[NT]	2	13000	[NT]		[NT]	
Nitrate as N in water	mg/L	0.005	Inorg-055	[NT]	2	0.32	[NT]		[NT]	
Phosphate as P in water	mg/L	0.005	Inorg-060	[NT]	2	0.02	[NT]		[NT]	

Envirolab Reference: 305662

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Envirolab Reference: 305662

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Where matrix spike recoveries fall below the lower limit of the acceptance criteria (e.g. for non-labile or standard Organics <60%), positive result(s) in the parent sample will subsequently have a higher than typical estimated uncertainty (MU estimates supplied on request) and in these circumstances the sample result is likely biased significantly low.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Envirolab Reference: 305662 Page | 29 of 30

Report Comments

VOC vials have headspace

VHC's in water - The PQL for 305662-4 has been raised due to the sample matrix thereby requiring a dilution.

Envirolab Reference: 305662 Page | 30 of 30

Attachment 3 Groundwater Field Data Sheets

Project: E04-0922 Scone	Sample ID: MWA
Client: UHSC	Sampler: DB
Site Address: Noblet Road Scone	Date: 13.9.22

Well Information						
Monument damaged: Rusty	YES / NO / N/A	Well ID visible:			YES / NO / N/A	A
Locked well casing:	YES / NO / N/A	Cap on PVC casi	ng:		YES / NO / N/A	A
Cement footing damaged:	YES / NO / N/A	Water in monun	nent casing:		YES / NO / N/A	1
Standing water, vegetation around monument:	YES / NO / N/A	Internal obstruc	tion in casing	g:	YES / NO / N/A	1
Well Damaged:	YES / NO / N/A	Odours from groundwater:			YES / NO / N/A	1
Casing above ground:0.77	. m agl	Weather Condit	ions:			
Standing water level: 6.905	m bgl	Temperature	>15 🗆	15-20 X	X	
Total well depth:15.66	m bgl		20-25 □	25-30		
Initial well volume:	L					
Water level after purging:8.30	m bgl	Clear □	Partly clo	oudy X	Overcast	
Volume of water purged:	L					
Water level at time of sampling:8.30	m bgl	Calm □	Slight br	eeze X	Moderate breez	ze 🗆
Well purged dry:	YES / NO		Wi	ndy □		
Purging equipment:	Bailer					
Sample equipment:	Bailer	Fine X	Showers		Rain	

Note: 50mm internal diameter pipe = 1.96 L/m.

Water Quality Details:

Time am/pm	DO (mg/L ⁻¹)	EC (μS cm ⁻¹)	рН	Redox (mV)	Temp (°C)	Salinity	Comments
10:03am	3.07	18221	5.91	-209.6	19.4		Water clear no smell
10:10am	2.40	18693	6.34	-212.1	19.8		
10:14am	2.40	18643	6.34	-211.3	20.3		
10:16am	2.37	18658	6.32	-212.9			
						·	

Water was clear no odour or sheen or hydrocarbons. Vegetation around monument and no sta water around monument. Landfill works.								

Project: E04-0922 Scone	Sample ID: MWB
Client: UHSC	Sampler: DB
Site Address: Noblet Road Scone	Date: 13.9.22

Well Information						
Monument damaged: Rusty	YES / NO / N/A	Well ID visible:			YES / NO / N	'A
Locked well casing:	YES / NO / N/A	Cap on PVC casi	ng:		YES / NO / N	'A
Cement footing damaged:	YES / NO / N/A	Water in monun	nent casing:		YES / NO / N/	A
Standing water, vegetation around monument:	YES / NO / N/A	Internal obstruc	tion in casing	g:	YES / NO / N/	A
Well Damaged: Rusty	YES / NO / N/A	Odours from gro	Odours from groundwater:			Α
Casing above ground:	m agl	Weather Condit	ions:			
Standing water level: 6.427	m bgl	Temperature	>15 🗆	15-20 🛚	X	
Total well depth:14.04	m bgl		20-25 □	25-30		
Initial well volume:	L					
Water level after purging:6.822	m bgl	Clear □	Partly clo	oudy X	Overcast	
Volume of water purged:	L					
Water level at time of sampling:6.822	m bgl	Calm □	Slight br	eeze X	Moderate bree	eze 🗆
Well purged dry:	YES / NO		Wi	ndy □		
Purging equipment:	Bailer					
Sample equipment:	Bailer	Fine X	Showers		Rain	

Note: 50mm internal diameter pipe = 1.96 L/m.

Water Quality Details:

Time am/pm	DO (mg/L ⁻¹)	EC (μS cm ⁻¹)	рН	Redox (mV)	Temp	Salinity	Comments
		-	- 07	· ,	(°C)		
10:48am	1.84	13151	5.97	-214.3	20.6		
10:50am	2.02	13211	6.26	-215.6	20.6		
10:53am	2.01	13193	6.35	-215.5	20.5		
10:55am	2.01	13193	6.35	-215.6	20.5		

Water was clear no odour or sheen or hydrocarbons. Vegetation around monument and no standi water around monument.								

Project: E04-0922 Scone	Sample ID: MWC
Client: UHSC	Sampler: DB
Site Address: Noblet Road Scone	Date: 13.9.22

Well Information						
Monument damaged: Rusty	YES / NO / N/A	Well ID visible:			YES / NO / N/A	
Locked well casing:	YES / NO / N/A	Cap on PVC casi	Cap on PVC casing:			/A
Cement footing damaged:	YES / NO / N/A	Water in monum	nent casing:		YES / NO / N/	/A
Standing water, vegetation around monument:	YES / NO / N/A	Internal obstruct	tion in casing	g:	YES / NO / N/	/A
Well Damaged: Rusty	YES / NO / N/A	Odours from groundwater:			YES / NO / N/	/A
Casing above ground:0.75	m agl	Weather Conditi	ions:			
Standing water level: 4.967	m bgl	Temperature	>15 🗆	15-20 🛚	X	
Total well depth:12.6	m bgl		20-25 🗆	25-30		
Initial well volume:	L					
Water level after purging:5.1635	m bgl	Clear □	Partly clo	oudy X	Overcast	X
Volume of water purged:	L					
Water level at time of sampling:5.163	m bgl	Calm X	Slight bre	eeze 🗆	Moderate bre	eze 🗆
Well purged dry:	YES / NO		Wi	indy □		
Purging equipment:	Bailer					
Sample equipment:	Bailer	Fine X	Showers		Rain	

Note: 50mm internal diameter pipe = 1.96 L/m.

Water Quality Details:

Time am/pm	DO (mg/L ⁻¹)	EC (μS cm ⁻¹)	рН	Redox (mV)	Temp (°C)	Salinity	Comments
11:22am	2.02	3575	6.45	-267.2	19.1		
11:24am	1.62	3442	6.55	-266.2	18.9		
11:26am	1.64	3525	6.60	261.1	19.0		
11:28am	1.62	3520	6.58	-265.2	19.0		
						_	
						_	

anding

Project: E04-0622 Scone	Sample ID: MWD Leachate well		
Client: UHSC	Sampler: DB		
Site Address: Noblet Road Scone	Date: 13.9.22		

Well Information						
Monument damaged: Rusty	YES / NO / N/A	Well ID visible:			YES / NO / N/A	
Locked well casing:	YES / NO / N/A	Cap on PVC casi	Cap on PVC casing:			1
Cement footing damaged:	YES / NO / N/A	Water in monun	nent casing:		YES / NO / N/A	4
Standing water, vegetation around monument:	YES / NO / N/A	Internal obstruc	tion in casing	g:	YES / NO / N/A	4
Well Damaged: Rusty	YES / NO / N/A	Odours from gro		YES / NO / N/A	A	
Casing above ground:N/A	. m agl	Weather Condit	ions:			
Standing water level: 9.643	m bgl	Temperature	>15 🗆	15-20	-	
Total well depth:12.96	m bgl		20-25 X	25-30		
Initial well volume:	L					
Water level after purging:9.816	m bgl	Clear □	Partly clo	oudy X	Overcast	
Volume of water purged:	L					
Water level at time of sampling:9.816	m bgl	Calm X	Slight bre	eeze 🗆	Moderate breez	ze 🗆
Well purged dry:	YES / NO		Wi	ndy □		
Purging equipment:	Bailer					
Sample equipment:	Bailer	Fine X	Showers		Rain	

Note: 50mm internal diameter pipe = 1.96 L/m.

Water Quality Details:

Time am/pm	DO (mg/L ⁻¹)	EC (μS cm ⁻¹)	рН	Redox (mV)	Temp (°C)	Salinity	Comments
12:48pm	0.78	5306	7.44	-286.9	25.6		Dark green sediment in water
12:50pm	1.73	5639	6.80	-266.8	267		
12:52pm	0.63	5957	6.88	-260.4	26.9		
12:54pm	0.46	6126	6.89	263.0	27.0		
						_	

Nater was dark green tinged with some sediment, methane odour, no sheen or hydrocarbons.
Vegetation around monument and no standing water around monument. Monitoring well was cut to ground level. Well, was surrounded by tyres.

Project: E04-0622 Scone	Sample ID: MWE
Client: UHSC	Sampler: DB
Site Address: Noblet Road Scone	Date: 13.9.22

Well Information						
Monument damaged: Rusty	YES / NO / N/A	Well ID visible:			YES / NO / N/A	
Locked well casing:	YES / NO / N/A	Cap on PVC casi	ng:		YES / NO / N/.	A
Cement footing damaged:	YES / NO / N/A	Water in monun	nent casing:		YES / NO / N/A	A
Standing water, vegetation around monument:	YES / NO / N/A	Internal obstruct	tion in casing	g:	YES / NO / N/A	A
Well Damaged: Rusty	YES / NO / N/A	Odours from gro	Odours from groundwater:			A
Casing above ground:0.68	m agl	Weather Conditi	ions:			
Standing water level: 2.834	m bgl	Temperature	>15 🗆	15-20	-	
Total well depth:9.46	m bgl		20-25 X	25-30		
Initial well volume:	L					
Water level after purging:3.34	m bgl	Clear □	Partly clo	oudy X	Overcast	
Volume of water purged:	L					
Water level at time of sampling:3.34	m bgl	Calm □	Slight br	eeze X	Moderate bree	ze 🗆
Well purged dry:	YES / NO		Wi	ndy □		
Purging equipment:	Bailer					
Sample equipment:	Bailer	Fine X	Showers		Rain	

Note: 50mm internal diameter pipe = 1.96 L/m.

Water Quality Details:

Time	DO	EC	рН	Redox	Temp	Salinity	Comments
am / pm	(mg/L ⁻¹)	(μS cm ⁻¹)		(mV)	(°C)		
12:13pm	1.76	2044	6.47	-287.0	17.6		
12:15pm	1.08	2038	6.53	-270.9	17.3		
12:17pm	1.09	2044	5.67	-266.6	17.4		
12:19pm	1.10	2040	5.70	-266.8	17.4		

Nater was clear, no odour or sheen or hydrocarbons. Vegetation around monument and no standing water around monument.						

Attachment 4 Water Quality Meter Calibration Certificate

Instrument

YSI Quatro Pro Plus

Serial No. 11E101629

Air-Met Scientific Pty Ltd 1300 137 067

Item	Test	Pass	Comments
Battery	Charge Condition	✓	
	Fuses	✓	
	Capacity	✓	
Switch/keypad	Operation	✓	
Display	Intensity	✓	
	Operation (segments)	√	*
Grill Filter	Condition	✓	
	Seal	√	
PCB	Condition	✓	
Connectors	Condition	✓	
Sensor	1. pH	√	and and an artist of the second secon
T-7575 (AD) (48 B) (A)	2. mV	√	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	3. EC	✓	
	4. D.O	√	
	5. Temp	✓	
Alarms	Beeper		
	Settings		
Software	Version		
Data logger	Operation		
Download	Operation		
Other tests:			

Certificate of Calibration

This is to certify that the above instrument has been calibrated to the following specifications:

Sensor	Serial no	Standard Solutions	Certified	Solution Bottle Number	Instrument Reading
2. pH 7.00		pH 7.00	50 to \$40 to 100 to	381241	pH 7.01
3. pH 4.00		pH 4.00		389384	pH 3.90
4. mV		235.8mV		385070/387761	235.8mV
5. EC		2.76mS		385041	2.76mS
6. Temp		21.9°C		MultiTherm	21.5°C
7. DO		0ppm		379624	0.00ppm

Calibrated by:

Alex Buist

Calibration date:

9/09/2022

Next calibration due:

9/10/2022