

ANNUAL GROUNDWATER MONITORING

SCONE WASTE FACILITY AREA

Noblet Road Scone NSW 2337

Upper Hunter Shire Council

DLH1186_H001594

February 2018

PROJECT NAME	Scone Waste Landfill Groundwater Monitoring
PROJECT ID	DLH1186
DOCUMENT CONTROL NUMBER	H001594
PREPARED FOR	Upper Hunter Shire Council
APPROVED FOR RELEASE BY	Stephen Challinor
DISCLAIMER AND COPYRIGHT	This report is subject to the copyright statement located at www.pacific-environment.com © Pacific Environment Operations Pty Ltd ABN 86 127 101 642

DOCUMENT CO	ONTROL			
VERSION	DATE	COMMENT	PREPARED BY	REVIEWED BY
H001594	Feb 2018	Final Copy	Tobias Scheid Michael Mercer	Jon Mansfield Stephen Challinor

DLA Environmental Services Pty Ltd: ABN 80 601 661 634

BRISBANE Level 1, 59 Melbourne Street, South Brisbane, Qld 4101

PO Box 3306, South Brisbane, Qld 4101 Ph: +61 7 3004 6400 Ph: +61 7 3004 6400

Unit 1, 22 Varley Street Yeerongpilly, Qld 4105 Ph: +61 7 3004 6460

ADELAIDE

35 Edward Street, Norwood SA 5067 PO Box 3187, Norwood, SA 5067 Ph: +61 8 8332 0960 Fax: +61 7 3844 5858

PERTH

Level 1, Suite 3 34 Queen Street, Perth, WA 6000

Ph: +61 8 9481 4961 Fax: +61 2 9870 0999

SYDNEY

Unit 11, Macquarie Link 227 Lane Cove Rd Macquarie Park NSW 2113

Ph: +61 2 9870 0900 Fax: +61 2 9870 0999

DLA ENVIRONMENTAL SERVICES

Unit 3, 38 Leighton Place Hornsby, NSW 2077 Ph: +61 2 9476 1765 Fax: +61 2 9476 1557

MELBOURNE

Level 10, 224 Queen Street Melbourne, Vic 3000 Ph: +61 3 9036 2637 Fax: +61 2 9870 0999

HUNTER

L4, 45 Watt Street, Newcastle NSW, 2300 Ph: +61 2 4903 5500 Email: hunter@dlaenvironmental.com.au

DISCLAIMER

DLA Environmental Services (DLA) acts in all professional matters as a faithful advisor to the Client and exercises all reasonable skill and care in the provision of its professional services. Reports are commissioned by and prepared for the exclusive use of the Client. They are subject to and issued in accordance with the agreement between the Client and DLA. DLA is not responsible for any liability and accepts no responsibility whatsoever arising from the misapplication or misinterpretation by third parties of the contents of its reports.

Except where expressly stated, DLA does not attempt to verify the accuracy, validity or comprehensiveness of any information supplied to DLA for its reports. Reports cannot be copied or reproduced in whole or part for any purpose without the prior written agreement of DLA.

Where site inspections, testing or fieldwork have taken place, the report is based on the information made available by the client or their nominees during the visit, visual observations and any subsequent discussions with regulatory authorities. The validity and comprehensiveness of supplied information has not been independently verified and, for the purposes of this report, it is assumed that the information provided to DLA is both complete and accurate. It is further assumed that normal activities were being undertaken at the site on the day of the site visit(s), unless explicitly stated otherwise.

ABBREVIATIONS

ACM	Asbestos Containing Material
AHD	Australian Height Datum
ANZECC	Australian and New Zealand Environment and Conservation Council
AST	Above-ground Storage Tank
ASS	Acid Sulfate Soil
B(a)P	Benzo(a)Pyrene
BGL	Below Ground Level
вн	Borehole
BTEX	Benzene, Toluene, Ethyl Benzene, Xylene
COC	Chain of Custody documentation
CLM	Contaminated Land Management
DA	Development Application
DEC	Department of Environment and Conservation (NSW)
DECC	Department of Environment and Climate Change (NSW)
DECCW	Department of Environment, Climate Change and Water (NSW)
DLA	DLA Environmental Services
DP	Deposited Plan
DQO	Data Quality Objective
EC	Electrical Conductivity
EIL	Ecological Investigation Level
EMP	Ecological Investigation Level Environmental Management Plan
EPA	C
ESL	Environment Protection Authority (NSW)
-	Ecological Screening Level
HIL	Health-Based Investigation Level
LOR MW	Limit of Reporting
	Monitoring Well
NATA	National Association of Testing Authorities, Australia
NEPC	National Environment Protection Council
NEPM	National Environment Protection Measure
NHMRC	National Health and Medical Research Council
NRMMC	Natural Resource Management Ministerial Council
NSW	New South Wales
OCP	Organochlorine Pesticides
OEH	Office of Environmental and Heritage
OPP	Organophosphorus Pesticides
OH&S	Occupational Health and Safety
PAH	Polycyclic Aromatic Hydrocarbons
PCB	Polychlorinated Biphenyls
PID	Photo-Ionisation Detector
PQL	Practical Quantification Limit
QA/QC	Quality Assurance and Quality Control
RAP	Remedial Action Plan
RPD	Relative Percentage Difference
SAC	Site Acceptance Criteria
SAQP	Sampling Analysis and Quality Plan
SEPP	State Environmental Planning Policy
SWL	Standing Water Level
TCLP	Toxicity Characteristic Leaching Procedure
TRH	Total Recoverable Hydrocarbons
UCL	Upper Confidence Limit
UST	Underground Storage Tank
VOC	Volatile Organic Compounds
WHS	Work Health Safety

TABLE OF CONTENTS

1.0	INTRODUCTION	1
1.1	General	1
1.2	Scope of Works	1
2.0	MONITORING PARAMETERS	2
3.0	SAMPLING METHODOLOGY	4
3.1	Groundwater Sampling	4
4.0	RESULTS	6
5.0	DISCUSSION	16
6.0	CONCLUSIONS	20
7.0	REFERENCES	21

FIGURES

Figure 1	Site Location Regional
Figure 2	Site Location Local
Figure 3	Site Layout with Sample Locations

ATTACHMENTS

Attachment 1	NATA Certified Analytical Results
Attachment 2	TPS 90 FLMV WQM Calibration Certificate
Attachment 3	Data Log
Attachment 4	Analyte Trend Graphs
Attachment 5	Groundwater Field Data Sheets

1.0 INTRODUCTION

1.1 General

DLA Environmental Services (DLA) was engaged by Upper Hunter Shire Council (the Client) to conduct annual and quarterly surface and groundwater monitoring of the following area:

Scone Waste Facility Area Noblet Road, Scone NSW 2337 (the Site).

The Groundwater Monitoring Report provides and overview of the current condition of groundwater at the Site in relation to the Site Criteria and satisfies the groundwater monitoring requirements of Environmental Protection Licence # 5863.

The report has been prepared utilising information obtained as part of the investigation process, from previous monitoring reports and from experience, knowledge, and current industry practice in the monitoring of similar sites. Quarterly monitoring is undertaken in April, July and October with annual reporting undertaken in the January monitoring period.

Annual water monitoring was undertaken on 12th January 2018 by staff of DLA.

1.2 Scope of Works

The scope of work provided by Upper Hunter Shire Council indicates that annual and quarterly ground water monitoring is required at the following groundwater sampling locations:

- MWA;
- MWB;
- MWC;
- MWD (landfill leachate monitoring well); and,
- MWE.

Refer to Figure 3: Site Layout with Sample Locations

2.0 MONITORING PARAMETERS

The following sample analysis parameters and monitoring frequency were provided by Upper Hunter Shire Council for the Groundwater Wells. Site Acceptance Criteria are primarily sourced from Australian and New Zealand guidelines for fresh and marine water quality (ANZECC) 2000 95% trigger values and National Environment Protection (Assessment of Site Contamination) Measure (NEPM) 2013.

		Site Acceptance Criteria	Monitoring	
Analytes	Units	NEPM 2013 and ANZECC	Frequency	
		2000 Fresh Water 95%		
Calcium	mg/L	NA	Quarterly	
Alkalinity (total)	mg/L	NA	Quarterly	
Chloride	mg/L	NA	Quarterly	
Fluoride	mg/L	NA	Quarterly	
Iron	mg/L	0.3 ^E	Quarterly	
Magnesium	mg/L	NA	Quarterly	
Manganese	mg/L	1.9 ^D	Quarterly	
Organochlorine pesticides	mg/L	0.00001 ^F	Quarterly	
Potassium	mg/L	410 ^Q	Quarterly	
рН	рН	6.5 – 8	Quarterly	
Sodium	mg/L	NA	Quarterly	
Ammonia	mg/L	0.9 ^D	Quarterly	
Nitrate	mg/L	0.7	Quarterly	
Sulfate	mg/L	NA	Quarterly	
Total organic carbon	mg/L	4	Quarterly	
Total phenolics	mg/L	0.32	Quarterly	
Electrical conductivity (EC)	μS/cm	NA	Quarterly	
Total dissolved solids	mg/L	NA	Yearly	
Biochemical Oxygen	mg/L	NA	Yearly	
Phosphate	mg/L	0.015 ^G	Yearly	
Arsenic III & V	mg/L	0.024 (III), 0.013 (V)	Yearly	
Aluminium	mg/L	0.055 (pH> 6.5)	Yearly	
Barium	mg/L	NA	Yearly	
Cadmium	mg/L	0.0002	Yearly	
Cobalt	mg/L	0.09 ^M	Yearly	
Copper	mg/L	0.0014	Yearly	
Chromium VI	mg/L	0.001 ^D	Yearly	

Table 2a: Analytes, Criteria and Monitoring Frequency for Groundwater Monitoring Wells.

Table 2a: Analytes, Criteria and Mo	nitoring Frequency for Groundwate	r Monitoring Wells (cont)
-------------------------------------	-----------------------------------	---------------------------

Sampling Parameter	Units	SAC - NEPM 2013 and ANZECC 2000 Fresh Water	Monitoring Frequency	
Chromium (total)	mg/L	0.001	Yearly	
Lead	mg/L	0.0034	Yearly	
Mercury	mg/L	0.0006	Yearly	
Zinc	mg/L	0.008 ^D	Yearly	
трн	mg/L	0.6'	Yearly	
Benzene	mg/L	0.95	Yearly	
Toluene	mg/L	0.18 ^L	Yearly	
Ethylbenzene	mg/L	0.08 ^L	Yearly	
CVCs/VOCCs:				
- Total	mg/L	NA	Yearly	
- Tetrachlorethene (TCE)	mg/L	NA	Yearly	
- 1,1,1-Trichloroethane (TCA)	mg/L	6500 (1,1,2 TCA)	Yearly	
- Tetrachloroethene (PCE)	mg/L	0.05 ^N	Yearly	
- 1,2-Dichloroethene	mg/L	0.03 ^P	Yearly	
Vinyl Chloride	mg/L	0.0003 ^N	Yearly	
PCBs	mg/L	0.00003 ^A	Yearly	
PAHs	mg/L	0.016 ^B	Yearly	
OPPs	mg/L	0.00002 ^c	Yearly	

A - Trigger value for Aroclor 1254 used in absence of trigger value for total PCBs

B - Trigger value for Naphthalene used in absence of reliable trigger value for total PAHs

C - Trigger value of Azinphos methyl used in absence of reliable trigger value for total OPP

D – Trigger value may not protect key species from chronic toxicity, refer to ANZECC & ARMCANZ (2000) for further guidance

E - Interim working level, in absence of reliable trigger value

F - Trigger value for DDT used in absence of trigger value for total OCP

G - Filterable Reactive Phosphate

I - Dutch Intervention (2000) Mineral Oil Criteria

L – ANZECC 2000 Low reliability trigger value

M – ANZECC 2000 Moderate reliability trigger value

N - NEPM 2013 drinking water criteria

P - Australian Drinking Water Guidelines 2011

Q - Poor (acceptable) drinking water criteria, World Health Organisation Guidelines for Drinking-water Quality 2009

3.0 SAMPLING METHODOLOGY

3.1 Groundwater Sampling

Groundwater samples were collected from five well locations. Purging and sampling of monitoring wells was conducted in accordance with the NEPM (NEPC, 2013), the *Guidelines for the Assessment and Management of Groundwater Contamination* (NSW DEC, 2007) and the *Murray-Darling Basin Groundwater Quality Sampling Guidelines*.

Wells were purged with a low flow peristaltic pump or disposable bailer whilst being measured for physiochemical stability to indicate the flow of formation water. Physiochemical properties were measured at regular intervals following the purging of each equipment volume using a TPS 90 FLMV Water Quality Meter and a flow through cell. Stable conditions were indicated by monitoring the following parameters for three consecutive readings of:

- PH ± 0.1 unit;
- EC± 5%;
- Temp ± 0.20;
- Redox ± 10%; and,
- Dissolved Oxygen ± 10%.

Refer to Attachment 2 – TPS 90 FLMV Water Quality Meter Calibration Certificate

Samples were obtained using a low-flow peristaltic pump with disposable Low Density Polyethelene Tubing (LDPE) tubing / samples were obtained using a disposable bailer.

Groundwater samples were collected into laboratory prepared sample containers for specific analytes, i.e. into a combination of plastic unpreserved, plastic preserved, glass amber unpreserved and preserved glass vials. All samples were collected and filled into the respective sample containers so no head space remained in the sample container, with no loss of any preservation agents, where present. Groundwater samples for metals were lab filtered prior to testing. All samples were then placed immediately into a chilled esky to prevent the loss of potential volatile components.

Decontamination procedures between sampling events and sampling locations are outlined below.

Sampling equipment was cleaned prior to sampling and between sample locations to prevent cross contamination. The cleaning procedure included:

– Washing and brush scrub with phosphate free laboratory grade detergent;

- Rinsing with water of a potable quality;
- Rinsing with deionised water; and,
- Disposable Teflon tubing was used with the low flow pump and was replaced between sample locations (Groundwater Sampling Only).

It is opinion of DLA that decontamination procedures were appropriate during groundwater sampling and that no cross contamination can be inferred.

4.0 **RESULTS**

All wells were sampled during the January 2018 ground water monitoring event, results are detailed below. Refer to **Table 4a to 4j** for results and **Figure 3** for sampling locations.

Sampling Parameter	Units	SAC (mg/L)	MWA Jan 2017	MWA Apr 2017	MWA July 2017	MWA Oct 2017	MWA Jan 2018
Calcium	mg/L	NA	600	570	640	600	590
Alkalinity (total)	mg/L	NA	460	450	470	470	490
Chloride	mg/L	NA	8200	7700	7900	7600	7200
Fluoride	mg/L	NA	ND	0.14	0.12	0.14	0.13
Iron	mg/L	0.3 ^B	ND	ND	ND	0.034	ND
Magnesium	mg/L	NA	1200	1100	1200	1100	1200
Manganese	mg/L	1.9 ^A	0.004	0.006	0.007	0.014	0.010
ОСР	mg/L	0.00001 ^c	ND	ND	ND	ND	ND
Potassium	mg/L	410 ^D	5.6	3.1	4.3	4.9	4.9
рН	рН	6.5 – 8	7.3	6.8	7.0	6.6	7.0
Sodium	mg/L	NA	2100	2200	2200	2000	2000
Ammonia	mg/L	0.9 ^D	0.13	0.14	0.07	0.42	0.12
Nitrate	mg/L	0.7	0.13	0.24	0.24	0.41	ND
Sulfate	mg/L	NA	38	39	42	43	40
Total Organic Carbon	mg/L	4	3.9	6.4	8.0	5.0	5.6
Total phenolics	mg/L	0.32	0.02	0.16	ND	ND	ND
EC	μS/cm	NA	19000	21000	21000	20000	20000

Table 4a – Annual Groundwater Results Comparison January 2017 - January 2018 (MWA)

Samples highlighted in **Bold** exceed SAC

ND = No Detection above Laboratory LOR

A - Trigger value may not protect key species from chronic toxicity, refer to ANZECC & ARMCANZ (2000) for further guidance

B - Interim working level, in absence of reliable trigger value

C - Trigger value for DDT used in absence of trigger value for total OCP

D - Poor (acceptable) drinking water criteria, World Health Organisation Guidelines for Drinking-water Quality 2009

Sampling Parameter	Units	SAC (mg/L)	MWA Jan 2017	MWA Jan 2018
Total dissolved solids	mg/L	NA	14000	18000
Biochemical Oxygen Demand (BOD)	mg/L	NA	ND	ND
Phosphate	mg/L	0.015 ^E	0.059	0.06
Arsenic III & V	mg/L	0.024 (III), 0.013 (V)	0.001	0.001
Aluminium	mg/L	0.055 (pH> 6.5)	ND	ND
Barium	mg/L	NA	0.59	0.62
Cadmium	mg/L	0.0002	ND	0.0002
Cobalt	mg/L	0.09 ^H	ND	ND
Copper	mg/L	0.0014	ND	ND
Chromium VI	mg/L	0.001 ^D	0.005	0.006
Chromium (total)	mg/L	0.001	0.001	0.002
Lead	mg/L	0.0034	ND	ND
Mercury	mg/L	0.0006	ND	ND
Zinc	mg/L	0.008 ^D	0.008	0.009
трн	mg/L	0.6 ^F	ND	ND
Benzene	mg/L	0.95	ND	ND
Toluene	mg/L	0.18 ^G	ND	ND
Ethylbenzene	mg/L	0.08 ^G	ND	ND
CVCs/VOCCs:				
- Total	mg/L	NA	ND	ND
- Tetrachlorethene (TCE)	mg/L	NA	ND	ND
- 1,1,1-Trichloroethane (TCA)	mg/L	6500 (1,1,2 TCA)	ND	ND
- Tetrachloroethene (PCE)	mg/L	0.05'	ND	ND
- 1,2-Dichloroethene	mg/L	0.03 ^J	ND	ND
Vinyl Chloride		0.0003'	ND	ND
PCBs	mg/L	0.00003 ^A	ND	ND
PAHs	mg/L	0.016 ^B	ND	ND
OPPs	mg/L	0.00002 ^c	ND	ND

Table 4b – Annual Groundwater Results Comparison January 2018 (MWA) Yearly Analytes

Samples highlighted in **Bold** exceed Site Acceptance Criteria ND = No Detection above Laboratory LOR

& ARMCANZ (2000) for further guidance E - Filterable Reactive Phosphate

A - Trigger value for Aroclor 1254 used in absence of trigger value for total PCBs

F - Dutch Intervention (2000) Mineral Oil Criteria

G – ANZECC 2000 Low reliability trigger value H – ANZECC 2000 Moderate reliability trigger value

B - Trigger value for Naphthalene used in absence of reliable trigger value for total PAHs

I - NEPM 2013 drinking water criteriaJ - Australian Drinking Water Guidelines 2011

C - Trigger value of Azinphos methyl used in absence of reliable trigger value for total $\ensuremath{\mathsf{OPP}}$

Sampling Parameter	Units	SAC (mg/L)	MWB Jan 2017	MWB Apr 2017	MWB July 2017	MWB Oct 2017	MWB Jan 2018
Calcium	mg/L	NA	590	580	640	610	600
Alkalinity (total)	mg/L	NA	380	360	390	380	420
Chloride	mg/L	NA	6300	6000	6000	6000	5400
Fluoride	mg/L	NA	ND	0.27	0.26	0.26	0.24
Iron	mg/L	0.3 ^B	ND	ND	ND	0.005	ND
Magnesium	mg/L	NA	850	760	820	790	810
Manganese	mg/L	1.9 ^A	ND	0.009	0.01	0.009	0.005
ОСР	mg/L	0.00001 ^c	ND	ND	ND	ND	<0.1
Potassium	mg/L	410 ^D	5	2.8	4.0	4.1	3.6
рН	рН	6.5 – 8	7.2	6.6	7.0	6.7	7.0
Sodium	mg/L	NA	1700	1700	1800	1600	1700
Ammonia	mg/L	0.9 ^D	0.10	0.09	0.21	0.09	0.09
Nitrate	mg/L	0.7	0.59	0.71	0.83	0.75	ND
Sulfate	mg/L	NA	70	77	75	70	66
Total Organic Carbon (TOC)	mg/L	4	5	6.8	8.2	6.3	6.2
Total phenolics	mg/L	0.32	0.04	0.02	ND	ND	ND
EC	μS/cm	NA	16000	17000	16000	16000	16000

Table 4c – Annual Groundwater Results Comparison January 2018 (MWB) Quarterly Analytes

Samples highlighted in **Bold** exceed SAC

ND = No Detection above Laboratory LOR

A – Trigger value may not protect key species from chronic toxicity, refer to ANZECC & ARMCANZ (2000) for further guidance

B - Interim working level, in absence of reliable trigger value

C - Trigger value for DDT used in absence of trigger value for total OCP

D - Poor (acceptable) drinking water criteria, World Health Organisation Guidelines for Drinking-water Quality 2009

Table 4d – Annual Groundwater Results Comparison January 2018 (MWC) Quarterly Analy						
Sampling Parameter	Units	SAC (mg/L)	MWB Jan 2017	MWB Jan 2018		
Total dissolved solids	mg/L	NA	13000	14000		
Biochemical Oxygen Demand (BOD)	mg/L	NA	ND	ND		
Phosphate	mg/L	0.015 ^E	0.017	ND		
Arsenic III & V	mg/L	0.024 (III), 0.013 (V)	0.002	0.001		
Aluminium	mg/L	0.055 (pH> 6.5)	ND	ND		
Barium	mg/L	NA	0.55	0.54		
Cadmium	mg/L	0.0002	ND	ND		
Cobalt	mg/L	0.09 ^H	ND	ND		
Copper	mg/L	0.0014	ND	ND		
Chromium VI	mg/L	0.001 ^D	ND	0.004		
Chromium (total)	mg/L	0.001	0.001	0.002		
Lead	mg/L	0.0034	ND	ND		
Mercury	mg/L	0.0006	ND	ND		
Zinc	mg/L	0.008 ^D	0.007	ND		
трн	mg/L	0.6 ^F	ND	ND		
Benzene	mg/L	0.95	ND	ND		
Toluene	mg/L	0.18 ^G	ND	ND		
Ethylbenzene	mg/L	0.08 ^G	ND	ND		
CVCs/VOCCs:						
- Total	mg/L	NA	ND	ND		
- Tetrachlorethene (TCE)	mg/L	NA	ND	ND		
- 1,1,1-Trichloroethane (TCA)	mg/L	6500 (1,1,2 TCA)	ND	ND		
- Tetrachloroethene (PCE)	mg/L	0.05'	ND	ND		
- 1,2-Dichloroethene	mg/L	0.03 ^J	ND	ND		
Vinyl Chloride		0.0003'	ND	ND		
PCBs	mg/L	0.00003 ^A	ND	ND		
PAHs	mg/L	0.016 ^B	ND	ND		
OPPs	mg/L	0.00002 ^c	ND	ND		

Table 4d – Annual Groundwater Results Comparison January 2018 (MWC) Quarterly Analytes

Samples highlighted in **Bold** exceed Site Acceptance Criteria ND = No Detection above Laboratory LOR

& ARMCANZ (2000) for further guidance E - Filterable Reactive Phosphate

A - Trigger value for Aroclor 1254 used in absence of trigger

ger F - Dutch Intervention (2000) Mineral Oil Criteria

G – ANZECC 2000 Low reliability trigger value H – ANZECC 2000 Moderate reliability trigger value

D – Trigger value may not protect key species from chronic toxicity, refer to ANZECC

B - Trigger value for Naphthalene used in absence of reliable trigger value for total PAHs

I - NEPM 2013 drinking water criteriaJ - Australian Drinking Water Guidelines 2011

 ${\rm C}$ - Trigger value of Azinphos methyl used in absence of reliable trigger value for total ${\rm OPP}$

value for total PCBs

Sampling Parameter	Unit s	SAC (mg/L)	MWC Jan 2017	MWC Apr 2017	MWC July 2017	MWC Oct 2018	MWC Jan 2018
Calcium	mg/L	NA	44	34	26	35	200
Alkalinity (total)	mg/L	NA	830	670	640	720	580
Chloride	mg/L	NA	880	520	370	500	2400
Fluoride	mg/L	NA	0.13	0.44	0.46	0.41	0.26
Iron	mg/L	0.3 ^B	ND	ND	0.008	ND	ND
Magnesium	mg/L	NA	89	68	52	73	330
Manganese	mg/L	1.9 ^A	7.8	7.3	4.6	4.6	12
ОСР	mg/L	0.00001 ^c	ND	ND	ND	ND	ND
Potassium	mg/L	410 ^D	2	0.9	0.8	0.9	1.8
рН	рН	6.5 – 8	7.6	7.1	7.2	7.1	6.9
Sodium	mg/L	NA	510	540	430	490	1100
Ammonia	mg/L	0.9 ^D	0.12	0.06	0.33	0.41	0.16
Nitrate	mg/L	0.7	ND	ND	0.005	ND	1.7
Sulfate	mg/L	NA	200	120	90	110	110
Total Organic Carbon (TOC)	mg/L	4	21	23	23	19	12
Total phenolics	mg/L	0.32	ND	ND	ND	ND	ND
EC	μS/c	NA	4200	2900	2400	3000	8700

Table 4e – Annual Groundwater Results Comparison January 2018 (MWC) Quarterly Analytes

Samples highlighted in **Bold** exceed SAC

ND = No Detection above Laboratory LOR

A - Trigger value may not protect key species from chronic toxicity, refer to ANZECC & ARMCANZ (2000) for further guidance

B - Interim working level, in absence of reliable trigger value

C - Trigger value for DDT used in absence of trigger value for total OCP

D – Poor (acceptable) drinking water criteria, World Health Organisation Guidelines for Drinking-water Quality 2009

Sampling Parameter	Units	SAC (mg/L)	MWC Jan 2017	MWC Jan 2018
Total dissolved solids	mg/L	NA	2400	5300
Biochemical Oxygen Demand (BOD)	mg/L	NA	ND	ND
Phosphate	mg/L	0.015 ^E	0.017	ND
Arsenic III & V	mg/L	0.024 (III), 0.013 (V)	NA	ND
Aluminium	mg/L	0.055 (pH> 6.5)	6	0.01
Barium	mg/L	NA	0.05	0.27
Cadmium	mg/L	0.0002	ND	ND
Cobalt	mg/L	0.09 ^H	0.013	0.024
Copper	mg/L	0.0014	ND	0.004
Chromium VI	mg/L	0.001 ^D	ND	ND
Chromium (total)	mg/L	0.001	ND	ND
Lead	mg/L	0.0034	ND	ND
Mercury	mg/L	0.0006	ND	ND
Zinc	mg/L	0.008 ^D	ND	ND
ТРН	mg/L	0.6 ^F	ND	ND
Benzene	mg/L	0.95	ND	ND
Toluene	mg/L	0.18 ^G	ND	ND
Ethylbenzene	mg/L	0.08 ^G	ND	ND
CVCs/VOCCs:				
- Total	mg/L	NA	ND	ND
- Tetrachlorethene (TCE)	mg/L	NA	ND	ND
- 1,1,1-Trichloroethane (TCA)	mg/L	6500 (1,1,2 TCA)	ND	ND
- Tetrachloroethene (PCE)	mg/L	0.05'	ND	ND
- 1,2-Dichloroethene	mg/L	0.03 ^J	ND	ND
Vinyl Chloride		0.0003'	ND	ND
PCBs	mg/L	0.00003 ^A	ND	ND
PAHs	mg/L	0.016 ^B	ND	ND
OPPs	mg/L	0.00002 ^c	ND	ND

Table 4f – Annual Groundwater Results Comparison January 2018 (MWC) Yearly Analytes

Samples highlighted in **Bold** exceed Site Acceptance Criteria ND = No Detection above Laboratory LOR

& ARMCANZ (2000) for further guidance E - Filterable Reactive Phosphate

A - Trigger value for Aroclor 1254 used in absence of trigger value for total PCBs

F - Dutch Intervention (2000) Mineral Oil Criteria

G – ANZECC 2000 Low reliability trigger value H – ANZECC 2000 Moderate reliability trigger value

B - Trigger value for Naphthalene used in absence of reliable trigger value for total PAHs

I - NEPM 2013 drinking water criteriaJ - Australian Drinking Water Guidelines 2011

 ${\rm C}$ - Trigger value of Azinphos methyl used in absence of reliable trigger value for total ${\rm OPP}$

Table 4g – Annual Groundwater Results Comparison January 2018 (MWD) Quarterly Analytes										
		SAC	MWD	MWD	MWD	MWD	MWD			
Sampling Parameter	Units	(mg/L)	(leachate)	(leachate)	(leachate)	(leachate)	(leachate)			
		(1118/ ⊑)	Jan 2017	Apr 2017	July 2017	Oct 2017	Jan 2018			
Calcium	mg/L	NA	260	260	150	190	160			
Alkalinity (total)	mg/L	NA	2300	1500	2500	2500	2400			
Chloride	mg/L	NA	2800	2200	2800	3700	3100			
Fluoride	mg/L	NA	ND	0.28	0.35	0.32	0.30			
Iron	mg/L	0.3 ^B	1.1	0.920	1.6	0.3	1.1			
Magnesium	mg/L	NA	230	190	230	260	270			
Manganese	mg/L	1.9 ^A	0.850	0.780	0.42	0.28	0.29			
ОСР	mg/L	0.00001 ^c	ND	ND	ND	ND	ND			
Potassium	mg/L	410 ^D	210	130	180	210	220			
рН	рН	6.5 – 8	7.5	7.3	7.5	7.2	7.7			
Sodium	mg/L	NA	1400	1200	1700	1800	1900			
Ammonia	mg/L	0.9 ^D	250	210	310	350	330			
Nitrate	mg/L	0.7	ND	ND	ND	ND	ND			
Sulfate	mg/L	NA	330	310	100	240	93			
Total Organic Carbon (TOC)	mg/L	4	270	150	320	320	340			
Total phenolics	mg/L	0.32	0.04	0.19	0.05	0.03	0.03			
EC	μS/c	NA	11000	9400	12000	13000	13000			

2010 (MAND) 0 1.1 лابر م ا

Samples highlighted in **Bold** exceed SAC

ND = No Detection above Laboratory LOR

A – Trigger value may not protect key species from chronic toxicity, refer to ANZECC & ARMCANZ (2000) for further guidance

B - Interim working level, in absence of reliable trigger value

C - Trigger value for DDT used in absence of trigger value for total OCP

D – Poor (acceptable) drinking water criteria, World Health Organisation Guidelines for Drinking-water Quality 2009

Table 4h – Annual Groundwater	Table 4h – Annual Groundwater Results Comparison January 2018 (MWD-Leachate) Yearly Analytes								
Sampling Parameter	Units	SAC (mg/L)	MWD Jan 2017	MWD Jan 2018					
Total dissolved solids	mg/L	NA	6200	7100					
Biochemical Oxygen Demand (BOD)	mg/L	NA	170	29					
Phosphate	mg/L	0.015 ^E	0.89	0.06					
Arsenic III & V	mg/L	0.024 (III), 0.013 (V)	0.012	0.01					
Aluminium	mg/L	0.055 (pH> 6.5)	14	ND					
Barium	mg/L	NA	0.91	1.10					
Cadmium	mg/L	0.0002	ND	ND					
Cobalt	mg/L	0.09 ^H	0.017	0.032					
Copper	mg/L	0.0014	ND	ND					
Chromium VI	mg/L	0.001 ^D	ND	0.006					
Chromium (total)	mg/L	0.001	0.03	0.050					
Lead	mg/L	0.0034	ND	ND					
Mercury	mg/L	0.0006	ND	ND					
Zinc	mg/L	0.008 ^D	0.035	0.012					
трн	mg/L	0.6 ^F	3	0.006					
Benzene	mg/L	0.95	0.002	0.0035					
Toluene	mg/L	0.18 ^G	0.0009	0.0012					
Ethylbenzene	mg/L	0.08 ^G	0.0034	0.027					
CVCs/VOCCs:									
- Total	mg/L	NA	0.042	0.097					
- Tetrachlorethene (TCE)	mg/L	NA	ND	ND					
- 1,1,1-Trichloroethane (TCA)	mg/L	6500 (1,1,2 TCA)	ND	ND					
- Tetrachloroethene (PCE)	mg/L	0.05'	ND	ND					
- 1,2-Dichloroethene	mg/L	0.03 ¹	ND	ND					
Vinyl Chloride		0.0003'	0.0004	ND					
PCBs	mg/L	0.00003 ^A	ND	ND					
PAHs	mg/L	0.016 ^B	0.017	0.006					
OPPs	mg/L	0.00002 ^c	ND	ND					

Table 4h – Annual Groundwater Results Comparison January 2018 (MWD-Leachate) Yearly Analytes

Samples highlighted in **Bold** exceed Site Acceptance Criteria ND = No Detection above Laboratory LOR

& ARMCANZ (2000) for further guidance E - Filterable Reactive Phosphate

A - Trigger value for Aroclor 1254 used in absence of trigger F - Dutch Intervention (2000) Mineral Oil Criteria value for total PCBs

B - Trigger value for Naphthalene used in absence of reliable trigger value for total PAHs

G – ANZECC 2000 Low reliability trigger value

H – ANZECC 2000 Moderate reliability trigger value

D – Trigger value may not protect key species from chronic toxicity, refer to ANZECC

I - NEPM 2013 drinking water criteria

J - Australian Drinking Water Guidelines 2011

C - Trigger value of Azinphos methyl used in absence of reliable trigger value for total OPP

As MWD is within the perched landfill leachate water table, the SAC are only applicable as indicators of general water quality for comparison to the wells surrounding the landfill. Exceedances of the Site Acceptance Criteria for MWD are expected due to the location of the monitoring well and do not indicate contamination is leaving the site.

Sampling Parameter	Unit s	SAC (mg/L)	MWE Jan 2017	MWE Apr 2017	MWE July 2017	MWE Oct 2017	MWE Jan 2018
Calcium	mg/	NA	70	34	60	56	56
Alkalinity (total)	mg/	NA	1100	1100	1200	1100	1200
Chloride	mg/	NA	580	360	340	310	280
Fluoride	mg/	NA	0.18	0.52	0.5	0.51	0.47
Iron	mg/	0.3 ^B	0.021	0.006	0.077	0.015	0.01
Magnesium	mg/	NA	76	67	65	55	55
Manganese	mg/	1.9 ^A	0.27	7.3	0.14	0.055	0.24
ОСР	mg/	0.00001 ^c	ND	ND	ND	ND	ND
Potassium	mg/	410 ^D	1.8	0.9	1.5	1.4	1.6
рН	рН	6.5 – 8	7.8	7.3	7.5	7.4	7.4
Sodium	mg/	NA	610	530	570	520	520
Ammonia	mg/	0.9 ^D	0.04	0.07	0.1	0.38	0.04
Nitrate	mg/	0.7	ND	ND	ND	ND	ND
Sulfate	mg/	NA	130	110	99	110	91
Total Organic Carbon (TOC)	mg/	4	13	20	26	17	15
Total phenolics	mg/	0.32	ND	ND	ND	ND	ND
EC	μS/c	NA	3500	3200	3100	3000	3000

Table 4i – Annual Groundwater Results Comparison January 2018 (MWE) Quarterly Analytes

Samples highlighted in **Bold** exceed SAC

ND = No Detection above Laboratory LOR

A - Trigger value may not protect key species from chronic toxicity, refer to ANZECC & ARMCANZ (2000) for further guidance

B - Interim working level, in absence of reliable trigger value

C - Trigger value for DDT used in absence of trigger value for total OCP

D - Poor (acceptable) drinking water criteria, World Health Organisation Guidelines for Drinking-water Quality 2009

Sampling Parameter	Units	SAC (mg/L)	MWE Jan 2017	MWE Jan 2018
Total dissolved solids	mg/L	NA	2100	1700
Biochemical Oxygen Demand (BOD)	mg/L	NA	ND	ND
Phosphate	mg/L	0.015 ^E	0.07	0.11
Arsenic III & V	mg/L	0.024 (III), 0.013 (V)	0.004	0.006
Aluminium	mg/L	0.055 (pH> 6.5)	ND	ND
Barium	mg/L	NA	0.054	0.04
Cadmium	mg/L	0.0002	ND	0.0002
Cobalt	mg/L	0.09 ^H	0.004	0.008
Copper	mg/L	0.0014	0.001	0.004
Chromium VI	mg/L	0.001 ^D	ND	ND
Chromium (total)	mg/L	0.001	ND	ND
Lead	mg/L	0.0034	ND	ND
Mercury	mg/L	0.0006	ND	ND
Zinc	mg/L	0.008 ^D	0.013	ND
трн	mg/L	0.6 ^F	ND	ND
Benzene	mg/L	0.95	ND	ND
Toluene	mg/L	0.18 ^G	ND	ND
Ethylbenzene	mg/L	0.08 ^G	ND	ND
CVCs/VOCCs:				
- Total	mg/L	NA	ND	ND
- Tetrachlorethene (TCE)	mg/L	NA	ND	ND
- 1,1,1-Trichloroethane (TCA)	mg/L	6500 (1,1,2 TCA)	ND	ND
- Tetrachloroethene (PCE)	mg/L	0.05'	ND	ND
- 1,2-Dichloroethene	mg/L	0.03 ^J	ND	ND
Vinyl Chloride		0.0003'	ND	ND
PCBs	mg/L	0.00003 ^A	ND	ND
PAHs	mg/L	0.016 ^B	ND	ND
OPPs	mg/L	0.00002 ^C D – Trigger value may not protect key	ND	ND

Table 4j – Annual Groundwater Results Comparison January 2017 (MWE) Yearly Analytes

Samples highlighted in **Bold** exceed Site Acceptance Criteria ND = No Detection above Laboratory LOR

& ARMCANZ (2000) for further guidance E - Filterable Reactive Phosphate

A - Trigger value for Aroclor 1254 used in absence of trigger value for total PCBs

F - Dutch Intervention (2000) Mineral Oil Criteria

G – ANZECC 2000 Low reliability trigger value H – ANZECC 2000 Moderate reliability trigger value

B - Trigger value for Naphthalene used in absence of reliable trigger value for total PAHs

I - NEPM 2013 drinking water criteriaJ - Australian Drinking Water Guidelines 2011

C - Trigger value of Azinphos methyl used in absence of reliable trigger value for total $\ensuremath{\mathsf{OPP}}$

5.0 **DISCUSSION**

Due to the topography of the Site, the inferred hydraulic gradient is generally to the west. Wells MWA, MWB and MWC are located down-hydraulic gradient of the landfill. Well MWE is considered to be up-hydraulic gradient of the landfill. Well MWD is located within the perched landfill water table, being the leachate within the landfill.

The water sampled from well MWD is landfill leachate and as such the Site Acceptance Criteria (SAC) is not used as a comparison, only as an indicator of current conditions. MWD is to be used as a general indicator of water quality within the landfill for comparison to the external monitoring wells.

The following is a summary of the results of the January 2018 sampling event in relation to the SAC. Key increasing or decreasing trends and exceedances of the SAC are shown:

MWA

- MWA had no exceedances of the SAC other than a concentration of Hexavalent Chromium (0.006 mg/L) exceeding the SAC (0.001 mg/L). Hexavalent Chromium was detected above SAC in 2017 annual monitoring evet at a slightly lower concentration. Hexavalent Chromium was not detected in MWA before the last two annual sampling events (2017-2018);
- MWA was reported to contain a concentration of Zinc at 0.009 just above the SAC (0.008 mg/L), decreasing from the January 2016 reading of 0.009 mg/L.
- A concentration of TOC (5.6 mg/L) was reported in MWA exceeding the SAC (4 mg/L). TOC has exceeded criteria in MWA since April 2017 sampling event; and is steadily declining.
- Phosphate in MWA recorded an exceedance of 0.06 mg/L slightly higher than the SAC of 0.015 mg/L, this exceedance is not dissimilar to the annual 2017 recorded concentration of 0.05 mg/L.

All other analytes reported concentrations consistent with previous monitoring data.

Refer to **Attachment 4**: Graph 1 – Analyte Trend MWA

MWB

- MWB presented a reduction for TOC, Potassium and Nitrate when comparing to the Jan 2017 annual sampling event where all these contaminants were recorded exceedances of SAC; and,
- Hexavalent Chromium (0.004 mg/L) exceeded the Site Acceptance Criteria (0.001 mg/L).
- MWA had no other exceedances of the Site Acceptance Criteria reported for the 2018 annual ground water monitoring event.

All other analytes reported concentrations consistent with previous monitoring data.

MWC

- A concentration of Manganese (12 mg/L) was reported in MWC exceeding the SAC (1.9 mg/L), representing an increasing trend in concentration, this is the highest recorded concentration over the past 12 months.
- A concentration of TOC (12 mg/L) was reported in MWC exceeding the SAC (1.9 mg/L), which is a reduction from previous reported concentrations. This well has exceeded the SAC for TOC all of the past six sampling events;
- A concentration of Nitrate (1.7 mg/L) was reported in MWC slightly exceeding the SAC (0.7 mg/L). This is the first recorded exceedance of Nitrate in this well in the last 12 months of monitoring; and,
- A concentration of Copper (0.004 mg/L) was reported in MWC slightly exceeding the SAC (0.001 mg/L).

All other analytes reported concentrations consistent with previous monitoring data. Refer to **Attachment 4:** Graph 2 – Analyte Trend MWC

MWD

- Well MWD was reported to contain no detection of Nitrate, giving no indication that the Nitrate in the affected wells is sourced from the landfill being that this well is into the leachate aquifer. The Nitrate may be migrating onto the site from the farmland to the north through the local ground water.

The following changes in monitoring parameter concentrations have occurred in the landfill leachate well MWD during the January 2018 monitoring event;

Ammonia has increased from 250 mg/L in Jan 2017 to a concentration of 330 mg/L (Jan 2018)
 and is substantially higher than in the other wells;

Refer to Attachment 4: Graph 5A – Analyte Trend Ammonia MWD

- Iron concentration of 1.1 mg/L has remained consistently high and is substantially higher than in the other wells;
- TOC has increased to 340 mg/L, this well has reported exceedances for TOC since monitoring commenced in 2015. TOC is substantially higher in MWD than in the other wells;
- Hexavalent Chromium is included in the yearly set of analytes and has presented this event with an exceedance in concentration of 0.006 mg/L. Hexavalent Chromium has not been detected in this well since monitoring commenced in 2015.
- Zinc concentrations exceeded Site Acceptance criteria with a result of 0.12 mg/L but experienced a steep decline from the 2017 annual sampling event (0.35 mg/L).
- Phosphate in MWA recorded an exceedance of 0.06 mg/L slightly higher than the adopted criteria of 0.015 mg/L. This exceedance is much lower than the annual 2017 recorded concentration of 0.89 mg/L.
- Iron in MWD exceeded Site Acceptance criteria (0.3 mg/L) with a recorded concentration of 1.1 mg/L, this exceedance is not uncommon as iron has displayed similar concentrations over the past 10 monitoring events with the exception of Oct 2016 and Oct 2017 where iron was reported below SAC.

Refer to Attachment 4: Graph 6 – Iron Analyte Trend MWD

There were no other recorded exceedances of the SAC in MWD during this annual sampling event.

MWE

- A concentration of TOC (15 mg/L) was reported in MWE exceeding the SAC (1.9 mg/L), which is consistent with previous reported concentrations. Concentrations have been reported between 7-16 mg/L in the previous four sampling events. This well has exceeded the SAC for TOC all of the past seven sampling events. The TOC concentration in MWE indicates that TOC is likely to be elevated in the local groundwater;
- A concentration of Copper (0.004 mg/L) was reported in MWE slightly exceeding the SAC (0.001 mg/L);
- A concentration of Alkalinity (1,200 mg/L) was reported in MWE representing an increasing trend in concentration. No SAC has been established at the Site for Alkalinity at the Site; and,
- A concentration of Chloride (280 mg/L) was reported in MWE representing a decreasing trend in concentration. No SAC has been established at the Site for Alkalinity at the Site.

Refer to Attachment 4- Graph 3 to view the established trend for this location.

All other analytes reported concentrations consistent with previous monitoring data.

Summary – All Monitoring Locations

The SAC used for TOC is intended for drinking water, not groundwater. Due to the magnitude of the exceedances and the intention of the SAC used, these exceedances are regarded as minor.

All other analytes in all other wells reported detections which were within the SAC.

The following analytes exceeded the SAC during the January 2018 sampling events; Hexavalent Chromium in MWA and MWB, TOC in MWA, MWB, MWC and MWE, Manganese in MWC, Zinc in MWA, Nitrate in MWC, Copper in MWC and MWE and Phosphate in MWA. The data trends will become more established as more results become available.

Refer to Attachment 3 – Data Log

6.0 CONCLUSIONS

The results of laboratory analysis of the samples collected from the Scone Waste Landfill during the January 2018 annual sampling event confirmed several exceedances of the Site Acceptance Criteria in the wells external to the landfill. The Site Acceptance Criteria are sourced from the ANZECC 2000 Guidelines for Fresh Water 95% level of protection, NEPM 2013 and Australian Drinking Water Guidelines 2011.

The following analytes exceeded the Site Acceptance Criteria during the January 2018 sampling events; Hexavalent Chromium in MWA and MWB, TOC in MWA, MWB, MWC and MWE, Manganese in MWC, Zinc in MWA, Nitrate in MWC, Copper in MWC and MWE and Phosphate in MWA.

The majority of exceedances are explained by local conditions or regarded as minor. Trending of these analytes over time may indicate a seasonal fluctuation of regional groundwater conditions.

The concentrations reported in MWD are substantially higher than other wells. This indicates that it is unlikely that major releases of landfill leachate into the local groundwater are occurring.

The elevated concentrations of Manganese, Nitrate, Copper, Phosphate, Alkalinity and Zinc in the landfill external wells does not indicate the concentrations are due to the landfill leachate, future testing and trending of data will allow for appropriate comparisons.

There were no other exceedances of the Site Acceptance Criteria, Further monitoring may reveal the source and extent of elevated concentrations of particular analytes. As more data becomes available, it will become clearer which analytes are consistently elevated and may allow for determining the source of contamination.

The next water sampling event will be the quarterly monitoring which will be undertaken in April 2018.

7.0 **REFERENCES**

- Australian and New Zealand Guidelines for the Management of Contaminated Sites (ANZECC/NHMRC 1992);
- Australia and New Zealand Guidelines for Fresh and Marine Water Quality (ANZECC, 2000);
- Australian Drinking Water Guidelines, National Water Quality Management Strategy 2011;
- Chapman, G A, Murphy, C L, Tille, P J, Atkinson, G and Morse, R J, Sydney Soil Landscapes Map, Series 9130 (1989);
- Contaminated Land Management Act 1997 (NSW);
- Contaminated Sites: Guidelines for Consultants Reporting on Contaminated Sites (NSW EPA 2011);
- Contaminated Sites: Guidelines on Duty to Report Contamination under the Contamination Land Management Act 1997 (NSW DECC, 2009);
- Contaminated Sites: Guidelines for the Assessment and Management of Groundwater Contamination (NSW DEC, 2007);
- Contaminated Sites: Guidelines on Significant Risk of Harm from Contaminated Land and the Duty to Report (NSW EPA 1999);
- Contaminated Sites: Sampling Design Guidelines (NSW EPA 1995);
- Environmental Guidelines: Solid Waste Landfills (NSW EPA, 1996);
- Health Based Soil Investigation Levels, Imray, P & Langley, A, National Environmental Health Forum Monographs, Soil Series No. 2 (2nd Ed), South Australian Health Commission (NEHF 1998b);
- National Environment Protection (Assessment of Site Contamination) Measure (No.1) (NEPC, 2013);
- Storage and Handling of Dangerous Goods Code of Practice 2005;
- Work Health and Safety Act 2011 (NSW) and associated regulations.
- R.W. Young *and others*, Ferruginous weathering under cool temperate climates during the Late Pleistocene in southeastern Australia, *Zeitschrift fur Geomorphologie*, 38(1), 1994;
- Quality Criteria for Water, U.S. Environmental Protection Agency, July 1976;
- Potassium in Drinking-water Background document for development of WHO Guidelines for Drinkingwater Quality, World Health Organization, 2009;
- Ambient Water Quality Guidelines for Organic Carbon, Ministry of Environment, Lands and Parks, British Columbia, Canada 2001.

FIGURE 1 – SITE LOCATION REGIONAL

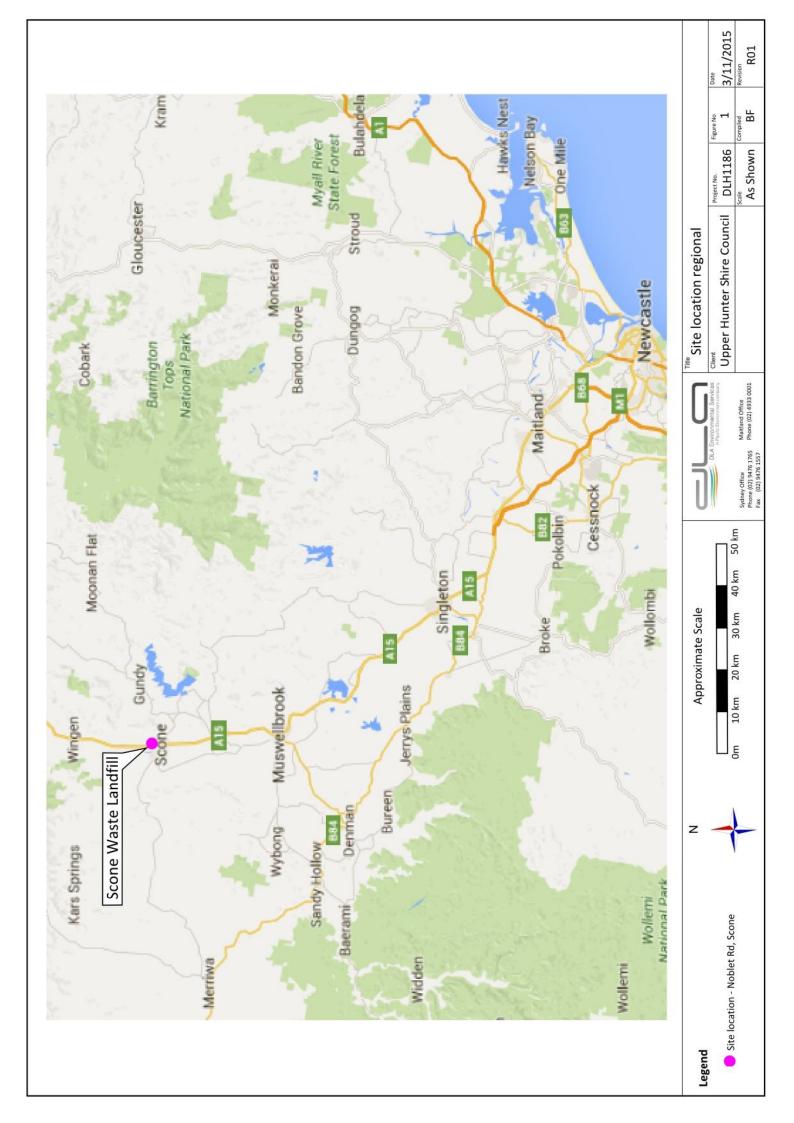


FIGURE 2 – SITE LOCATION LOCAL

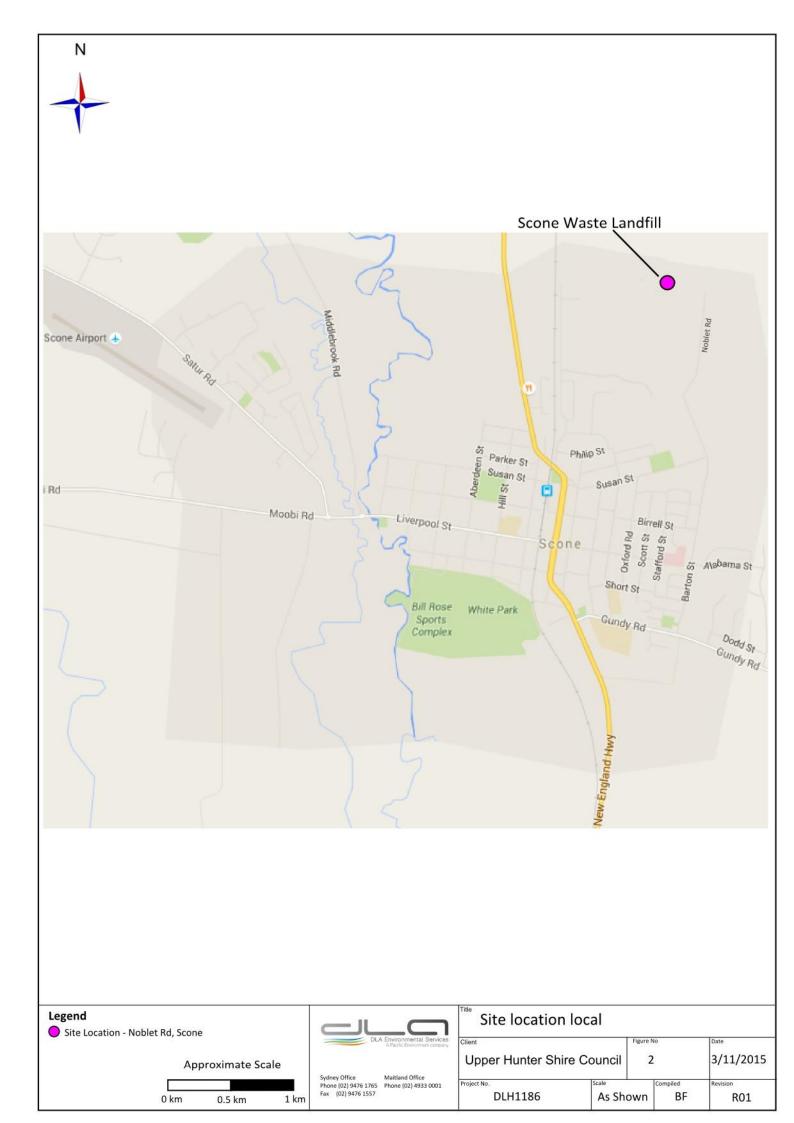


FIGURE 3 - SITE LAYOUT WITH SAMPLE LOCATIONS

ATTACHMENT 1 – NATA CERTIFIED ANALYTICAL RESULTS

ANALYTICAL REPORT

- CLIENT DETAILS		LABORATORY DE	TAILS
Contact	Kathrine Skeen	Manager	Huong Crawford
Client	DLA ENVIRONMENTAL SERVICES PTY LTD	Laboratory	SGS Alexandria Environmental
Address	Level 4 ERM 45 Watt Street Newcastle NSW 2300	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 4933 0001	Telephone	+61 2 8594 0400
Facsimile	61 2 98700999	Facsimile	+61 2 8594 0499
Email	kathrine.skeen@dlaenvironmental.com.au	Email	au.environmental.sydney@sgs.com
Project	DLH1186 Scone Landfill	SGS Reference	SE174394 R0
Order Number	(Not specified)	Date Received	16/1/2018
Samples	5	Date Reported	24/1/2018

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

PAH - # 4: The Limit of Reporting (LOR) has been raised due to interferences from the sample matrix.

SIGNATORIES

Bennet Lo Senior Organic Chemist/Metals Chemist

Teresa Nguyen Organic Chemist

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

PO Box 6432 Bourke Rd BC

Alexandria NSW 2015 Alexandria NSW 2015 Australia Australia

www.sgs.com.au

Member of the SGS Group Page 1 of 26

Dong Liang Metals/Inorganics Team Leader

kmln

Ly Kim Ha **Organic Section Head**

Unit 16 33 Maddox St

t +61 2 8594 0400 f +61 2 8594 0499

VOCs in Water [AN433] Tested: 19/1/2018

Nachelanisyet1.54.6.54.6.54.6.54.6.54.6.5Disbarcellace/enderes (CFC)yet54.6.54.6.54.6.54.6.54.6.5Vind states (Crossitient)yet1.6.24.6.14.6.14.6.14.6.14.6.1Vind states (Crossitient)yet1.6.24.6.14.6.14.6.14.6.14.6.1Channelmanyet1.6.14.6.14.6.14.6.14.6.14.6.14.6.1Channelmanyet1.6.14.6.1 </th <th></th> <th></th> <th></th> <th>MWA</th> <th>MWB</th> <th>MWC</th> <th>MWD</th> <th>MWE</th>				MWA	MWB	MWC	MWD	MWE
NameNoNoNoNoNoNoNoNoBraneµ10.50.450.450.450.450.450.450.45Braneµ10.50.450.450.450.450.450.450.45Injencoµ10.50.450.450.450.450.450.450.45Injencoµ20.50.450.450.450.450.450.450.450.45Systemµ20.50.45				WATED				WATED
NAMEUnitST 73.400ST 73					WAIER -		WATER	WATER
arrewyell0.00.000.000.001.000.00Timesyell0.00								
Tamenpi<npi<npi<npi<npi<npi<npi<npi<npi<npi<npi<npi<npi<npi<npi<npi<npi<npi<npi<npi<npi<npi<npi<npi<npi<npi<npi<npi<npi<npi<npi<npi<npi<npi<npi<npi<npi<npi<npi<npi<npi<npi<npi<npi<npi<npi<npi<npi<npi<npi<npi<npi<npi<npi<npi<npi<npi<npi<npi<npi<npi<npi<npi<npi<npi<npi<npi<npi<npi<npi<npi<npi<npi<npi<npi<npi<npi<npi<npi<npi<npi<npi<npi<npi<npi<npi<npi<npi<npi<npi<npi<npi<npi<npi<npi<npi<npi<npi<npi<npi<npi<npi<npi<npi<<								
implementmpl <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
mp-phonenp-pho								
operationopen								
ips: Northerips: Norther<								
Tay UPUNup1								
Nethelesjpd9.59.69.69.69.69.69.6Discontinuovaluesjpd9.89.6<	Total BTEX							
Debosentationupb66464646464My choice (Choundema)upb064646464646464My choice (Choundema)upb064 </td <td>Naphthalene</td> <td></td> <td>0.5</td> <td><0.5</td> <td><0.5</td> <td><0.5</td> <td></td> <td><0.5</td>	Naphthalene		0.5	<0.5	<0.5	<0.5		<0.5
Distortionjpi56.46.46.46.46.46.4Brannenbanjpi6.86.46.46.46.46.46.46.4Brannenbanjpi76.46.46.46.46.46.46.46.4Chanahaajpi76.4	Dichlorodifluoromethane (CFC-12)		5	<5	<5	<5		<5
yny diwne (c)morentime)yny diwne (w)wd. <td>Chloromethane</td> <td></td> <td>5</td> <td><5</td> <td><5</td> <td><5</td> <td><5</td> <td><5</td>	Chloromethane		5	<5	<5	<5	<5	<5
Dranshampp<pppppp<pp<pp<pppp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<	Vinyl chloride (Chloroethene)		0.3	<0.3	<0.3	<0.3	<0.3	<0.3
chronine and inside and	Bromomethane	µg/L	10	<10	<10	<10	<10	<10
Acadors (2 preparation) ippl 10 410	Chloroethane		5	<5	<5	<5	<5	<5
boomentame ypl f d d d d d d 1.1debrendme ypl 0.5 40.5	Trichlorofluoromethane		1	<1	<1	<1	<1	<1
11 dataceatheme ppL 0.5 -0.5 -0.5 -0.5 -0.5 -0.5 Acryonite upL 0.5 -0.5 -0.5 -0.5 -0.5 -0.5 Acryonite upL 0.5 -0.6 -0.5	Acetone (2-propanone)	µg/L	10	<10	<10	<10	13	<10
Arylanité ppl 65 405 405 405 405 405 Dublander (Merginer duind) ppl 6 43 43 43 43 Multicharts ppl 2 42 42 42 43 45 45 Carlon duindin ppl 0 405 405 405 405 405 Multi Authoris ppl 0 42 42 42 42 42 43 43 Multi Authoris ppl 0.5 405	lodomethane	µg/L	5	<5	<5	<5	<5	<5
Deblementhane (Methylaria choinsia) gpl 6 46 45 46 46 All (choin) gpl 2 42	1,1-dichloroethene	μg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ab) t chorde pgL 2 42	Acrylonitrile	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Carbon disalitie pal. 2 42 42 42 43 65 times 1-2 coloronatione ppl. 0.5 0.65 0.65 0.65 0.65 0.65 0.65 times 1-2 coloronatione ppl. 0.5 0.65	Dichloromethane (Methylene chloride)	μg/L	5	<5	<5	<5	<5	<5
tans-12-db/browhene µgL 0.5 40.5 40.5 40.5 40.5 40.5 MBE MBE MapL 2 42 42 42 42 42 42 MBE MBE MapL 0.5 40.5 40.5 40.5 40.5 40.5 40.5 MISE (Bulance) µgL 10 410	Allyl chloride	µg/L	2	<2	<2	<2	<2	<2
MBE (Methylambay) and (Me	Carbon disulfide	µg/L	2	<2	<2	<2	15	<2
11 11<	trans-1,2-dichloroethene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Viny acetate ppl. 10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <th< td=""><td>MtBE (Methyl-tert-butyl ether)</td><td>µg/L</td><td>2</td><td><2</td><td><2</td><td><2</td><td><2</td><td><2</td></th<>	MtBE (Methyl-tert-butyl ether)	µg/L	2	<2	<2	<2	<2	<2
MEX PpL 10 <10 <10 <10 <10 <10 <10 ci-12-dictocethene ppL 0.5 <0.5	1,1-dichloroethane	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
cis 1.2 dethloremethane ypl 0.5	Vinyl acetate	µg/L	10	<10	<10	<10	<10	<10
betworkbrowethane ppl 0.5 40.5	MEK (2-butanone)							
Chlordom (THM) µgl 0.5 40.5 40.5 40.5 40.5 40.5 2.2.dichtorgorpane µgl 0.5 40.5	cis-1,2-dichloroethene							
2.2 deldtorgorgane µgL 0.5								
1.2 dichirosethane µpl. 0.5								
I.1.4.thickloroethane upL 0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
1.1 i.1 i.1 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
Carbon tetrachioride µgl 0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
Number Number<								
1.2 dchloropropane µgL 0.5 <0.5								
Trichoroethyen,TCE) µgL 0.5 <0.5 <0.5 <0.5 <0.5 <0.5 2-hitopropane µg/L 0.0 <100								
Partnerpropane µg/L 100 <100 <100 <100 <100 <100 Bromodichloromethane (THM) µg/L 0.5 <0.5								
Bromodichloromethane (THM) µg/L 0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5								
MBK (4-methyl-2-pentanon) µµ/L 5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>								
bit bit bit bit bit bit bit 1:1.3-dichloropropene µg/L 0.5 <0.5	MIBK (4-methyl-2-pentanone)							
trans-1,3-dichloropropene µg/L 0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 1,1_2-trichloroethane µg/L 0.5 <0.5	cis-1,3-dichloropropene							
Indext Index Index Index <td>trans-1,3-dichloropropene</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	trans-1,3-dichloropropene							
1.3-dichloropropane µg/L 0.5 <0.5	1,1,2-trichloroethane							<0.5
Dibromochloromethane (THM) µg/L 0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5			0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1/2-dibromeethane (EDB) µg/L 0.5 <0.5	Dibromochloromethane (THM)		0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Tetrachloroethoreethylene,PCE) µg/L 0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	2-hexanone (MBK)	µg/L	5	<5	<5	<5	<5	<5
1/1,1-2-tetrachloroethane µg/L 0.5 <0.5 <0.5 <0.5 <0.5 <0.5 Chlorobenzene µg/L 0.5 <0.5	1,2-dibromoethane (EDB)	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Chorobenzene µg/L 0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	Tetrachloroethene (Perchloroethylene,PCE)	μg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Bromoform (THM) µg/L 0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	1,1,1,2-tetrachloroethane	μg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
is-1,4-dichloro-2-butene µg/L 1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	Chlorobenzene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Syrene (Vinyl benzene) µg/L 0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	Bromoform (THM)	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,1,2,2-tetrachloroethane µg/L 0.5 <0.5 <0.5 <0.5 <0.5 1,2,3-trichloropropane µg/L 0.5 <0.5	cis-1,4-dichloro-2-butene	µg/L	1	<1	<1	<1	<1	<1
1,2,3-trichloropropane µg/L 0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	Styrene (Vinyl benzene)	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	1,1,2,2-tetrachloroethane	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
trans-1,4-dichloro-2-butene µg/L 1 <1 <1 <1 <1 <1	1,2,3-trichloropropane	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	trans-1,4-dichloro-2-butene	µg/L	1	<1	<1	<1	<1	<1

VOCs in Water [AN433] Tested: 19/1/2018 (continued)

			MWA	MWB	MWC	MWD	MWE
			WATER	WATER	WATER	WATER	WATER
			-	-		-	-
			12/1/2018	12/1/2018	12/1/2018	12/1/2018	12/1/2018
PARAMETER	UOM	LOR	SE174394.001	SE174394.002	SE174394.003	SE174394.004	SE174394.005
Isopropylbenzene (Cumene)	µg/L	0.5	<0.5	<0.5	<0.5	1.1	<0.5
Bromobenzene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
n-propylbenzene	µg/L	0.5	<0.5	<0.5	<0.5	1.1	<0.5
2-chlorotoluene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
4-chlorotoluene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,3,5-trimethylbenzene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
tert-butylbenzene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,2,4-trimethylbenzene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
sec-butylbenzene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,3-dichlorobenzene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,4-dichlorobenzene	µg/L	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
p-isopropyltoluene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,2-dichlorobenzene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
n-butylbenzene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,2-dibromo-3-chloropropane	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,2,4-trichlorobenzene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Hexachlorobutadiene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,2,3-trichlorobenzene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Total VOC	µg/L	10	<10	<10	<10	97	<10

Volatile Petroleum Hydrocarbons in Water [AN433] Tested: 19/1/2018

			MWA	MWB	MWC	MWD	MWE
			WATER	WATER	WATER	WATER	WATER
			12/1/2018	12/1/2018	12/1/2018	12/1/2018	12/1/2018
PARAMETER	UOM	LOR	SE174394.001	SE174394.002	SE174394.003	SE174394.004	SE174394.005
TRH C6-C9	µg/L	40	<40	<40	<40	61	<40
Benzene (F0)	µg/L	0.5	<0.5	<0.5	<0.5	3.5	<0.5
TRH C6-C10	µg/L	50	<50	<50	<50	83	<50
TRH C6-C10 minus BTEX (F1)	µg/L	50	<50	<50	<50	<50	<50

ANALYTICAL RESULTS

SE174394 R0

TRH (Total Recoverable Hydrocarbons) in Water [AN403] Tested: 1

ested: 17/1/2018

			MWA	MWB	MWC	MWD	MWE
			WATER	WATER	WATER	WATER	WATER
							-
			12/1/2018	12/1/2018	12/1/2018	12/1/2018	12/1/2018
PARAMETER	UOM	LOR	SE174394.001	SE174394.002	SE174394.003	SE174394.004	SE174394.005
TRH C10-C14	µg/L	50	<50	<50	<50	940	<50
TRH C15-C28	µg/L	200	<200	<200	<200	3100	<200
TRH C29-C36	µg/L	200	<200	<200	<200	580	<200
TRH C37-C40	µg/L	200	<200	<200	<200	<200	<200
TRH >C10-C16 (F2)	µg/L	60	<60	<60	<60	1200	<60
TRH >C16-C34 (F3)	µg/L	500	<500	<500	<500	3400	<500
TRH >C34-C40 (F4)	µg/L	500	<500	<500	<500	<500	<500
TRH C10-C36	µg/L	450	<450	<450	<450	4600	<450
TRH C10-C40	µg/L	650	<650	<650	<650	4600	<650
TRH >C10-C16 (F2) - Naphthalene	µg/L	60	<60	<60	<60	1200	<60

PAH (Polynuclear Aromatic Hydrocarbons) in Water [AN420] Tested: 17/1/2018

			MWA	MWB	MWC	MWD	MWE
			WATER	WATER	WATER	WATER	WATER
			12/1/2018	12/1/2018	12/1/2018	12/1/2018	12/1/2018
PARAMETER	UOM	LOR	SE174394.001	SE174394.002	SE174394.003	SE174394.004	SE174394.005
Naphthalene	µg/L	0.1	<0.1	<0.1	<0.1	5.7	<0.1
2-methylnaphthalene	µg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	µg/L	0.1	<0.1	<0.1	<0.1	<0.4↑	<0.1
Acenaphthylene	µg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	µg/L	0.1	<0.1	<0.1	<0.1	<0.2↑	<0.1
Fluorene	µg/L	0.1	<0.1	<0.1	<0.1	<0.2↑	<0.1
Phenanthrene	µg/L	0.1	<0.1	<0.1	<0.1	<0.2↑	<0.1
Anthracene	µg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	µg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	µg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	µg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	µg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b&j)fluoranthene	µg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(k)fluoranthene	µg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene	µg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	µg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(ah)anthracene	µg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	µg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total PAH (18)	µg/L	1	<1	<1	<1	6	<1

OC Pesticides in Water [AN420] Tested: 17/1/2018

			MWA	MWB	MWC	MWD	MWE
			WATER	WATER	WATER	WATER	WATER
							-
			12/1/2018	12/1/2018	12/1/2018	12/1/2018	12/1/2018
PARAMETER	UOM	LOR	SE174394.001	SE174394.002	SE174394.003	SE174394.004	SE174394.005
Alpha BHC	µg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Hexachlorobenzene (HCB)	µg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta BHC	µg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Lindane (gamma BHC)	µg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Delta BHC	µg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	µg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	µg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor epoxide	µg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Gamma Chlordane	µg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Chlordane	µg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Endosulfan	µg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDE	µg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDE	µg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	µg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	µg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta Endosulfan	µg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDD	µg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDD	µg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan sulphate	µg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDT	µg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDT	µg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin ketone	µg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	µg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
trans-Nonachlor	µg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin aldehyde	µg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Isodrin	µg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Mirex	μg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	F0						

OP Pesticides in Water [AN420] Tested: 17/1/2018

			MWA	MWB	MWC	MWD	MWE
			WATER	WATER	WATER	WATER	WATER
			- 12/1/2018	- 12/1/2018	- 12/1/2018	- 12/1/2018	- 12/1/2018
PARAMETER	UOM	LOR	SE174394.001	SE174394.002	SE174394.003	SE174394.004	SE174394.005
Dichlorvos	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dimethoate	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Diazinon (Dimpylate)	μg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Fenitrothion	µg/L	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Malathion	µg/L	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	µg/L	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Parathion-ethyl (Parathion)	µg/L	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Bromophos Ethyl	µg/L	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Methidathion	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ethion	µg/L	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Azinphos-methyl	µg/L	0.2	<0.2	<0.2	<0.2	<0.2	<0.2

ANALYTICAL RESULTS

SE174394 R0

PCBs in Water [AN420] Tested: 17/1/2018

			MWA	MWB	MWC	MWD	MWE
			WATER	WATER	WATER	WATER	WATER
			12/1/2018	12/1/2018	12/1/2018	12/1/2018	12/1/2018
PARAMETER	UOM	LOR	SE174394.001	SE174394.002	SE174394.003	SE174394.004	SE174394.005
Arochlor 1016	µg/L	1	<1	<1	<1	<1	<1
Arochlor 1221	µg/L	1	<1	<1	<1	<1	<1
Arochlor 1232	µg/L	1	<1	<1	<1	<1	<1
Arochlor 1242	µg/L	1	<1	<1	<1	<1	<1
Arochlor 1248	µg/L	1	<1	<1	<1	<1	<1
Arochlor 1254	µg/L	1	<1	<1	<1	<1	<1
Arochlor 1260	µg/L	1	<1	<1	<1	<1	<1
Arochlor 1262	µg/L	1	<1	<1	<1	<1	<1
Arochlor 1268	µg/L	1	<1	<1	<1	<1	<1
Total Arochlors*	µg/L	5	<5	<5	<5	<5	<5

Total Phenolics in Water [AN289] Tested: 18/1/2018

			MWA	MWB	MWC	MWD	MWE
			WATER	WATER	WATER	WATER	WATER
							-
			12/1/2018	12/1/2018	12/1/2018	12/1/2018	12/1/2018
PARAMETER	UOM	LOR	SE174394.001	SE174394.002	SE174394.003	SE174394.004	SE174394.005
Total Phenols	mg/L	0.01	<0.01	<0.01	<0.01	0.03	<0.01

Anions by Ion Chromatography in Water [AN245] Tested: 18/1/2018

			MWA	MWB	MWC	MWD	MWE
			WATER	WATER	WATER	WATER	WATER
			12/1/2018	12/1/2018	12/1/2018	12/1/2018	12/1/2018
PARAMETER	UOM	LOR	SE174394.001	SE174394.002	SE174394.003	SE174394.004	SE174394.005
Fluoride	mg/L	0.1	0.13	0.24	0.26	0.30	0.47
Chloride	mg/L	1	7200	5400	2400	3100	280
Nitrate Nitrogen, NO3-N	mg/L	0.005	<0.10↑	<0.10↑	1.7	<0.050↑	<0.005
Sulfate, SO4	mg/L	1	40	66	110	93	91

Alkalinity [AN135] Tested: 17/1/2018

			MWA	MWB	MWC	MWD	MWE
			WATER	WATER	WATER	WATER	WATER
							-
			12/1/2018	12/1/2018	12/1/2018	12/1/2018	12/1/2018
PARAMETER	UOM	LOR	SE174394.001	SE174394.002	SE174394.003	SE174394.004	SE174394.005
Total Alkalinity as CaCO3	mg/L	5	490	420	580	2400	1200

pH in water [AN101] Tested: 17/1/2018

			MWA	MWB	MWC	MWD	MWE
			WATER	WATER	WATER	WATER	WATER
							-
			12/1/2018	12/1/2018	12/1/2018	12/1/2018	12/1/2018
PARAMETER	UOM	LOR	SE174394.001	SE174394.002	SE174394.003	SE174394.004	SE174394.005
pH**	No unit	-	7.0	7.0	6.9	7.7	7.4

Conductivity and TDS by Calculation - Water [AN106] Tested: 17/1/2018

			MWA	MWB	MWC	MWD	MWE
			WATER	WATER	WATER	WATER	WATER
							-
			12/1/2018	12/1/2018	12/1/2018	12/1/2018	12/1/2018
PARAMETER	UOM	LOR	SE174394.001	SE174394.002	SE174394.003	SE174394.004	SE174394.005
Conductivity @ 25 C	µS/cm	2	20000	16000	8700	13000	3000

Forms of Carbon [AN190] Tested: 22/1/2018

			MWA	MWB	MWC	MWD	MWE
			WATER	WATER	WATER	WATER	WATER
			12/1/2018	12/1/2018	12/1/2018	12/1/2018	12/1/2018
PARAMETER	UOM	LOR	SE174394.001	SE174394.002	SE174394.003	SE174394.004	SE174394.005
Total Organic Carbon as NPOC	mg/L	0.2	5.6	6.2	12	340	15

Total Dissolved Solids (TDS) in water [AN113] Tested: 19/1/2018

			MWA	MWB	MWC	MWD	MWE
			WATER	WATER	WATER	WATER	WATER
							-
			12/1/2018	12/1/2018	12/1/2018	12/1/2018	12/1/2018
PARAMETER	UOM	LOR	SE174394.001	SE174394.002	SE174394.003	SE174394.004	SE174394.005
Total Dissolved Solids Dried at 175-185°C	mg/L	10	18000	14000	5300	7100	1700

BOD5 [AN183] Tested: 18/1/2018

			MWA	MWB	MWC	MWD	MWE
			WATER	WATER	WATER	WATER	WATER
							-
			12/1/2018	12/1/2018	12/1/2018	12/1/2018	12/1/2018
PARAMETER	UOM	LOR	SE174394.001	SE174394.002	SE174394.003	SE174394.004	SE174394.005
Biochemical Oxygen Demand (BOD5)	mg/L	5	<5	<5	<5	29	<5

Ammonia Nitrogen by Discrete Analyser (Aquakem) [AN291] Tested: 17/1/2018

Ammonia Nitrogen, NH₃ as N	mg/L	0.01	0.12	0.09	0.16	330	0.04
PARAMETER	UOM	LOR	SE174394.001	SE174394.002	SE174394.003	SE174394.004	SE174394.005
			12/1/2018	12/1/2018	12/1/2018	12/1/2018	12/1/2018
			WATER	WATER	WATER	WATER	WATER
			MWA	MWB	MWC	MWD	MWE

Hexavalent Chromium in water by Discrete Analyser [AN283] Tested: 23/1/2018

			MWA	MWB	MWC	MWD	MWE
			WATER	WATER	WATER	WATER	WATER
							-
			12/1/2018	12/1/2018	12/1/2018	12/1/2018	12/1/2018
PARAMETER	UOM	LOR	SE174394.001	SE174394.002	SE174394.003	SE174394.004	SE174394.005
Hexavalent Chromium, Cr6+	mg/L	0.004	0.006	0.004	<0.004	0.006	<0.004

Filterable Reactive Phosphorus (FRP) [AN278] Tested: 19/1/2018

			MWA	MWB	MWC	MWD	MWE
			WATER	WATER	WATER	WATER	WATER
							-
			12/1/2018	12/1/2018	12/1/2018	12/1/2018	12/1/2018
PARAMETER	UOM	LOR	SE174394.001	SE174394.002	SE174394.003	SE174394.004	SE174394.005
Filterable Reactive Phosphorus	mg/L	0.005	0.052	0.010	<0.005	0.50	0.086

Metals in Water (Dissolved) by ICPOES [AN320] Tested: 22/1/2018

			MWA	MWB	MWC	MWD	MWE
			WATER	WATER	WATER	WATER	WATER
			12/1/2018	12/1/2018	12/1/2018	12/1/2018	12/1/2018
PARAMETER	UOM	LOR	SE174394.001	SE174394.002	SE174394.003	SE174394.004	SE174394.005
Calcium, Ca	mg/L	0.1	590	600	200	160	56
Magnesium, Mg	mg/L	0.1	1200	810	330	270	55
Potassium, K	mg/L	0.2	4.9	3.6	1.8	220	1.6
Sodium, Na	mg/L	0.1	2000	1700	1100	1900	520

Trace Metals (Dissolved) in Water by ICPMS [AN318] Tested: 19/1/2018

			MWA	MWB	MWC	MWD	MWE
			WATER -	WATER -	WATER -	WATER -	WATER -
			12/1/2018	12/1/2018	12/1/2018	12/1/2018	12/1/2018
PARAMETER	UOM	LOR	SE174394.001	SE174394.002	SE174394.003	SE174394.004	SE174394.005
Iron, Fe	µg/L	5	<5	<5	<5	1100	10
Manganese, Mn	µg/L	1	10	5	12000	290	240
Arsenic, As	µg/L	1	1	1	<1	10	6
Aluminium, Al	µg/L	5	<5	<5	11	<5	<5
Barium, Ba	µg/L	1	620	540	270	1100	42
Cadmium, Cd	µg/L	0.1	0.2	<0.1	<0.1	<0.1	0.2
Cobalt, Co	µg/L	1	<1	<1	24	32	8
Copper, Cu	µg/L	1	<1	<1	4	<1	4
Chromium, Cr	µg/L	1	2	2	<1	50	<1
Lead, Pb	µg/L	1	<1	<1	<1	<1	<1
Zinc, Zn	µg/L	5	9	<5	<5	12	<5

Mercury (dissolved) in Water [AN311(Perth)/AN312] Tested: 22/1/2018

			MWA	MWB	MWC	MWD	MWE
			WATER	WATER	WATER	WATER	WATER
							-
			12/1/2018	12/1/2018	12/1/2018	12/1/2018	12/1/2018
PARAMETER	UOM	LOR	SE174394.001	SE174394.002	SE174394.003	SE174394.004	SE174394.005
Mercury	mg/L	0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001

METHOD	METHODOLOGY SUMMARY
AN020	Unpreserved water sample is filtered through a 0.45µm membrane filter and acidified with nitric acid similar to APHA3030B.
AN101	pH in Soil Sludge Sediment and Water: pH is measured electrometrically using a combination electrode (glass plus reference electrode) and is calibrated against 3 buffers purchased commercially. For soils, an extract with water is made at a ratio of 1:5 and the pH determined and reported on the extract. Reference APHA 4500-H+.
AN106	Conductivity and TDS by Calculation: Conductivity is measured by meter with temperature compensation and is calibrated against a standard solution of potassium chloride. Conductivity is generally reported as μ mhos/cm or μ S/cm @ 25°C. For soils, an extract with water is made at a ratio of 1:5 and the EC determined and reported on the extract, or calculated back to the as-received sample. Total Dissolved Salts can be estimated from conductivity using a conversion factor, which for natural waters, is in the range 0.55 to 0.75. SGS use 0.6. Reference APHA 2510 B.
AN113	Total Dissolved Solids: A well-mixed filtered sample of known volume is evaporated to dryness at 180°C and the residue weighed. Approximate methods for correlating chemical analysis with dissolved solids are available. Reference APHA 2540 C.
AN135	Alkalinity (and forms of) by Titration: The sample is titrated with standard acid to pH 8.3 (P titre) and pH 4.5 (T titre) and permanent and/or total alkalinity calculated. The results are expressed as equivalents of calcium carbonate or recalculated as bicarbonate, carbonate and hydroxide. Reference APHA 2320. Internal Reference AN135
AN183	BOD: Serial dilutions of the sample are firstly combined with various reagents to aid bacterial growth and the sample is incubated for 5 days at 20°C. The difference between the initial and final oxygen contents of the sample is the amount of oxygen consumed by the bacteria. This is related to the organic loading of the sample therefore cBOD is the measure of the digestibility or bioavailability of organic matter in the sample. Reference APHA 5210 B. Internal Reference AN183
AN190	TOC and DOC in Water: A homogenised micro portion of sample is injected into a heated reaction chamber packed with an oxidative catalyst that converts organic carbon to carbon dioxide. The CO2 is measured using a non-dispersive infrared detector. The process is fully automated in a commercially available analyser. If required a sugar value can be calculated from the TOC result. Reference APHA 5310 B.
AN190	Chemical oxygen demand can be calculated/estimated based on the O2/C relation as 2.67*NPOC (TOC). This is an estimate only and the factor will vary with sample matrix so results should be interpreted with caution.
AN245	Anions by Ion Chromatography: A water sample is injected into an eluent stream that passes through the ion chromatographic system where the anions of interest ie Br, Cl, NO2, NO3 and SO4 are separated on their relative affinities for the active sites on the column packing material. Changes to the conductivity and the UV-visible absorbance of the eluent enable identification and quantitation of the anions based on their retention time and peak height or area. APHA 4110 B
AN278	Filterable Reactive Phosphorus by DA (determined on filtered sample): Orthophosphate reacts with ammonium molybdate (Mo VI) and potassium antimonyl tartrate (Sb III) in acid medium to form an antimony-phosphomolybdate complex. This complex is subsequently reduced with ascorbic acid to form a blue colour and the absorbance is read at 880 nm. The sensitivity of the automated method is 10-20 times that of the macro method. Reference APHA 4500-P F
AN283	Hexavalent Chromium via Aquakem DA: Soluble hexavalent chromium forms a red/violet colour with diphenylcarbazide in acidic solution. This procedure is very sensitive and nearly specific for Cr 6+. If total chromium is also measured the trivalent form of chromium Cr3+ can be calculated from the difference (Total Cr - Cr6+). Reference APHA3500CrB.
AN289	Analysis of Total Phenols in Soil Sediment and Water: Steam distillable phenols react with 4-aminoantipyrine at pH 7.9±0.1 in the presence of potassium ferricyanide to form a coloured antipyrine dye analysed by Discrete Analyser. Reference APHA 5530 B/D.
AN291	Ammonia in solution reacts with hypochlorite ions from Sodium Dichloroisocyanuate, and salicylate in the presence of Sodium Nitroprusside to form indophenol blue and measured at 670 nm by Discrete Analyser.
AN311(Perth)/AN312	Mercury by Cold Vapour AAS in Waters: Mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500.
AN318	Determination of elements at trace level in waters by ICP-MS technique, in accordance with USEPA 6020A.
AN320	Metals by ICP-OES: Samples are preserved with 10% nitric acid for a wide range of metals and some non-metals. This solution is measured by Inductively Coupled Plasma. Solutions are aspirated into an argon plasma at 8000-10000K and emit characteristic energy or light as a result of electron transitions through unique energy levels. The emitted light is focused onto a diffraction grating where it is separated into components.
AN320	Photomultipliers or CCDs are used to measure the light intensity at specific wavelengths. This intensity is directly proportional to concentration. Corrections are required to compensate for spectral overlap between elements. Reference APHA 3120 B.

AN403 Additio becaus method solvent AN403 AN403 AN403 AN420 AN420 AN420 AN420 AN420 AN420 AN420 AN420 AN420 AN433 Calculation Free a	is >500 mg/L free of total carbon dioxide carnot be reported. APHA4500CO2 D.
AN403 Additio becaus method solvent AN403 The G grease method sufficie 8015B. AN420 (SVOC and w USEPA AN420 SVOC Phthala followin	and Total Carbon Dioxide may be calculated using alkalinity forms only when the samples TDS is <500mg/L. is >500mg/L free or total carbon dioxide cannot be reported. APHA4500CO2 D.
AN403 Additio becaus method solvent AN403 The G grease method sufficie 8015B. AN420 (SVOC and w USEPA AN420 SVOC Phthala	and C6-C9 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass ometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed r. References: USEPA 5030B, 8020A, 8260.
AN403 Additio becaus method solvent AN403 The G grease method sufficie 8015B. AN420 (SVOC and w	Compounds: Semi-Volatile Organic Compounds (SVOCs) including OC, OP, PCB, Herbicides, PAH, ates and Speciated Phenols in soils, sediments and waters are determined by GCMS/ECD technique ag appropriate solvent extraction process (Based on USEPA 3500C and 8270D).
AN403 Additio becaus methoc solvent AN403 The G grease methoc sufficie	is) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols (etc) in soils, sediments vaters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on A 3500C and 8270D).
AN403 Additio becaus method method	C/FID method is not well suited to the analysis of refined high boiling point materials (ie lubricating oils or s) but is particularly suited for measuring diesel, kerosene and petrol if care to control volatility is taken. This d will detect naturally occurring hydrocarbons, lipids, animal fats, phenols and PAHs if they are present at nt levels, dependent on the use of specific cleanup/fractionation techniques. Reference USEPA 3510B,
	nally, the volatile C6-C9/C6-C10 fractions may be determined by a purge and trap technique and GC/MS se of the potential for volatiles loss. Total Recoveerable Hydrocarbons - Silica (TRH-Silica) follows the same d of analysis after silica gel cleanup of the solvent extract. Aliphatic/Aromatic Speciation follows the same d of analysis after fractionation of the solvent extract over silica with differential polarity of the eluent is.
extracti combu: alkane	Recoverable Hydrocarbons: Determination of Hydrocarbons by gas chromatography after a solvent ion. Detection is by flame ionisation detector (FID) that produces an electronic signal in proportion to the stible matter passing through it. Total Recoverable Hydrocarbons (TRH) are routinely reported as four groupings based on the carbon chain length of the compounds: C6-C9, C10-C14, C15-C28 and C29-C36 recognition of the NEPM 1999 (2013), >C10-C16 (F2), >C16-C34 (F3) and >C34-C40 (F4). Where F2 is ed for Naphthalene, the VOC data for Naphthalene is used.

FOOTNOTES

 * NATA accreditation does not cover the performance of this service.
 ** Indicative data, theoretical holding time exceeded Not analysed.
 NVL Not validated.
 IS Insufficient sample for analysis.
 LNR Sample listed, but not received.

UOM Unit of Measure. LOR Limit of Reporting. ↑↓ Raised/lowered Limit of Reporting.

Samples analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here : http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This report must not be reproduced, except in full.

ANALYTICAL REPORT

- CLIENT DETAILS		LABORATORY DE	TAILS
Contact	Tobias Scheid	Manager	Huong Crawford
Client	DLA ENVIRONMENTAL SERVICES PTY LTD	Laboratory	SGS Alexandria Environmental
Address	42b Church St Maitland NSW 2320	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 4933 0001	Telephone	+61 2 8594 0400
Facsimile	61 2 98700999	Facsimile	+61 2 8594 0499
Email	tobias.scheid@dlaenvironmental.com.au	Email	au.environmental.sydney@sgs.com
Project	DLH1186 Scone Landfill Additional	SGS Reference	SE174394A R0
Order Number	(Not specified)	Date Received	30/1/2018
Samples	5	Date Reported	1/2/2018

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

SIGNATORIES

Dong Liang Metals/Inorganics Team Leader

SGS Australia Pty Ltd ABN 44 000 964 278 Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

www.sgs.com.au

Anions by Ion Chromatography in Water [AN245] Tested: 1/2/2018

			MWA	MWB	MWC	MWD	MWE
			WATER	WATER	WATER	WATER	WATER
							-
			12/1/2018	12/1/2018	12/1/2018	12/1/2018	12/1/2018
PARAMETER	UOM	LOR	SE174394A.001	SE174394A.002	SE174394A.003	SE174394A.004	SE174394A.005
ortho Phosphate as P	mg/L	0.05	0.06	<0.05	<0.05	0.06	0.11

METHOD _____

AN245

____METHODOLOGY_SUMMARY__

Anions by Ion Chromatography: A water sample is injected into an eluent stream that passes through the ion chromatographic system where the anions of interest ie Br, Cl, NO2, NO3 and SO4 are separated on their relative affinities for the active sites on the column packing material. Changes to the conductivity and the UV-visible absorbance of the eluent enable identification and quantitation of the anions based on their retention time and peak height or area. APHA 4110 B

FOOTNOTES -

*	NATA accreditation does not cover	-	Not analysed.	UOM	Unit of Measure.
	the performance of this service.	NVL	Not validated.	LOR	Limit of Reporting.
**	Indicative data, theoretical holding	IS	Insufficient sample for analysis.	↑↓	Raised/lowered Limit of
	time exceeded.	LNR	Sample listed, but not received.		Reporting.

Samples analysed as received.

Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here : http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This report must not be reproduced, except in full.

ATTACHMENT 2 – YSI WATER QUALITY METER CALIBRATION CERTIFICATE

Equipment Certification Report - TPS 90FLMV Water Quality Meter

This Water Quality Meter has been performance checked and calibrated as follows:

Sensor	Concentration	Span	1	Span	2	Traceability Lot #	Pass?
pН	pH 7.00 / pH 4.00	7.00	pН	4.00	pН	310933/309016	
Conductivity	12.88mS/cm	0.00	mS/cm	12.38	mS/cm	309852	2-
TDS	36 ppk	0	ppk	36	ppk	309444	2
Dissolved Oxygen	Sodium Sulphite / Air	0 in Sodium	ppm Sulphite		C, ppm on in Air	5656(ss) 306207(DI)	ď
Check only						J	
Redox (ORP) *	Electrode operability test	240n +/- 10		235	[−] mV	311901(A) 308904(B)	2

Battery Status <u>X</u> · O (min 7.2V)
 Electrical Safety Tag attached (AS/NZS 3760)

ThermoFisher

SCIENTIFIC

Tag No: <u>1900 983</u> Valid to: <u>17/01/201</u>8

Date: 10/01/2018

☐ Temperature <u>2.2.4</u>°C ☐ Electrodes Cleaned and checked

Signed: <u>O</u>

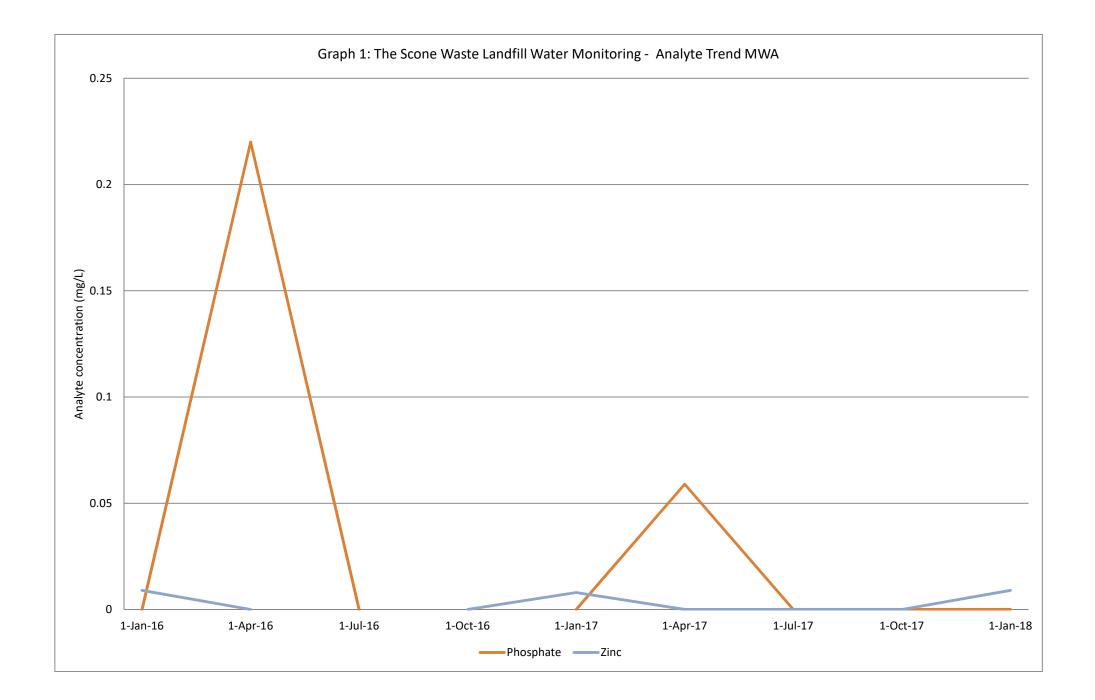
minimum \$30 cleaning / service / repair charge may be applied to any unclean or damaged items. Items not returned will be billed for at the full replacement cost.

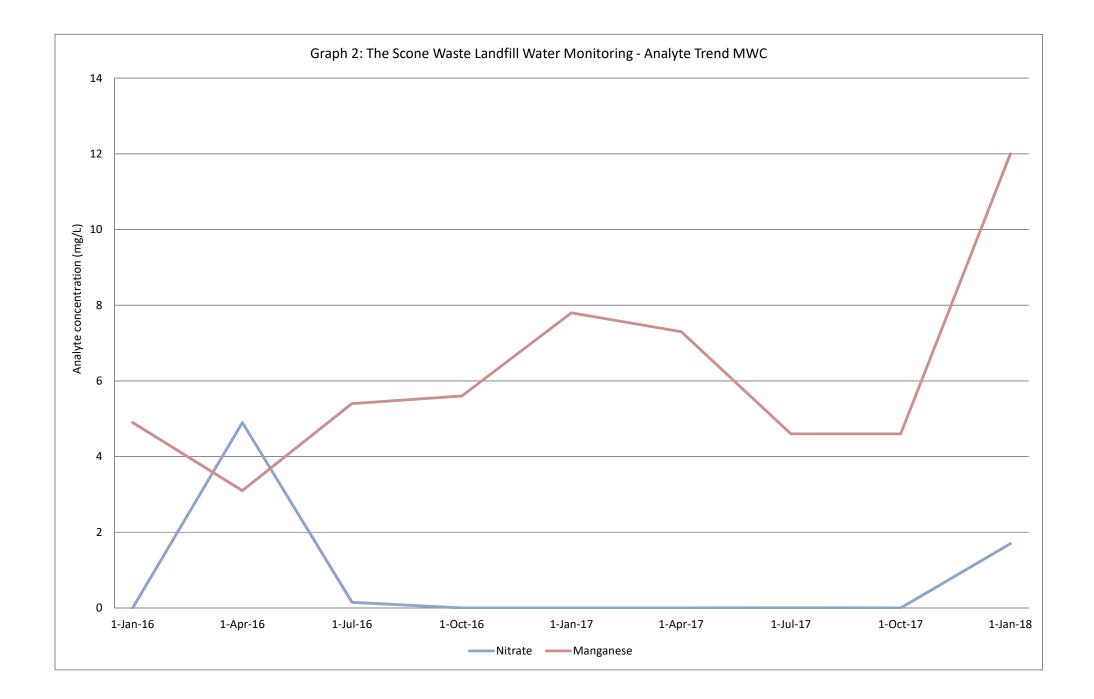
Sett প্রিম্বিদ্যমিদ্রমিদ্রি		Item 90FLMV Unit. Ops check/Battery status: pH sensor with wetting cap, 5m Conductivity/TDS/Temperature K=10 sensor, 5m Dissolved oxygen YSI5739 sensor with wetting cap, 5m Redox (ORP) sensor with wetting cap, 5m Power supply 240V to 12V DC 200mA Instruction Manual Quick Guide Syringe with storage solution for pH and ORP sensors Carry Case Check to confirm electrical safety (tag must be valid)
Date: <i>[0]</i>	101/2012	3

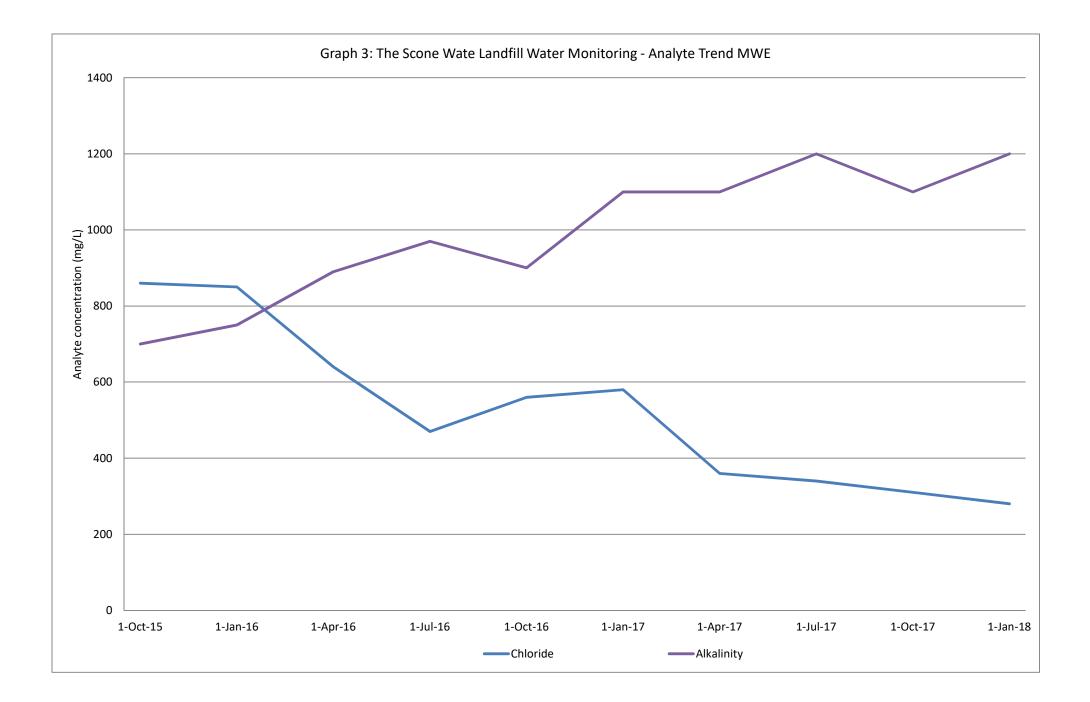
Signed;

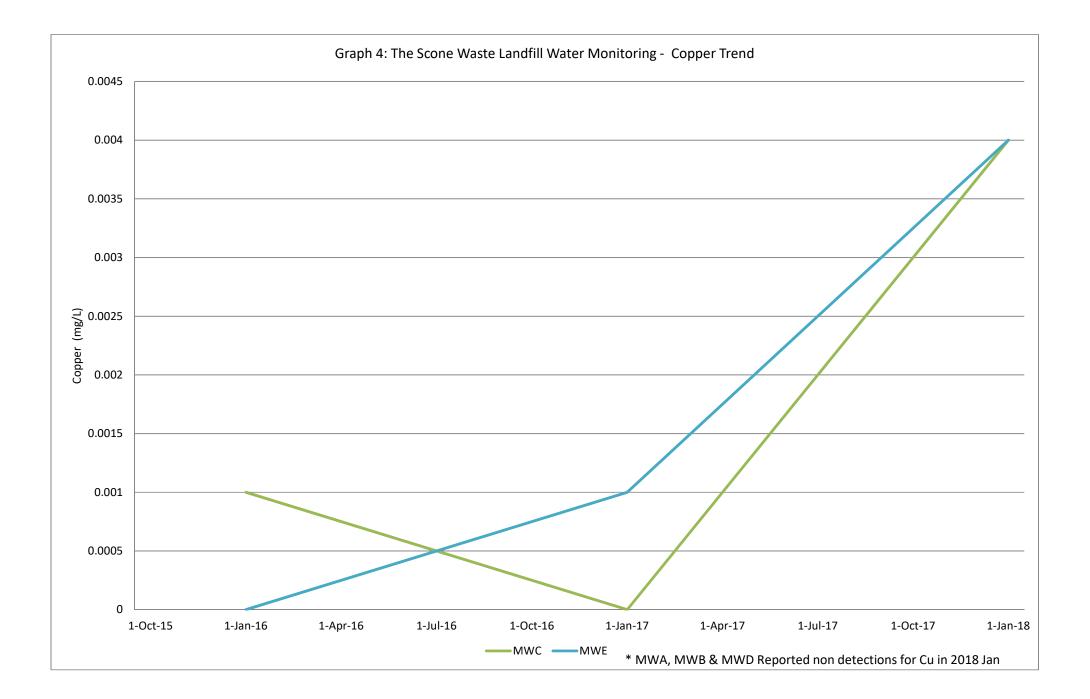
TFS Reference	<5008132	Return Date: / /
Customer Reference		Return Time:
Equipment ID	90FLMV_S`N	Condition on return:
Equipment Serial No.	43539	

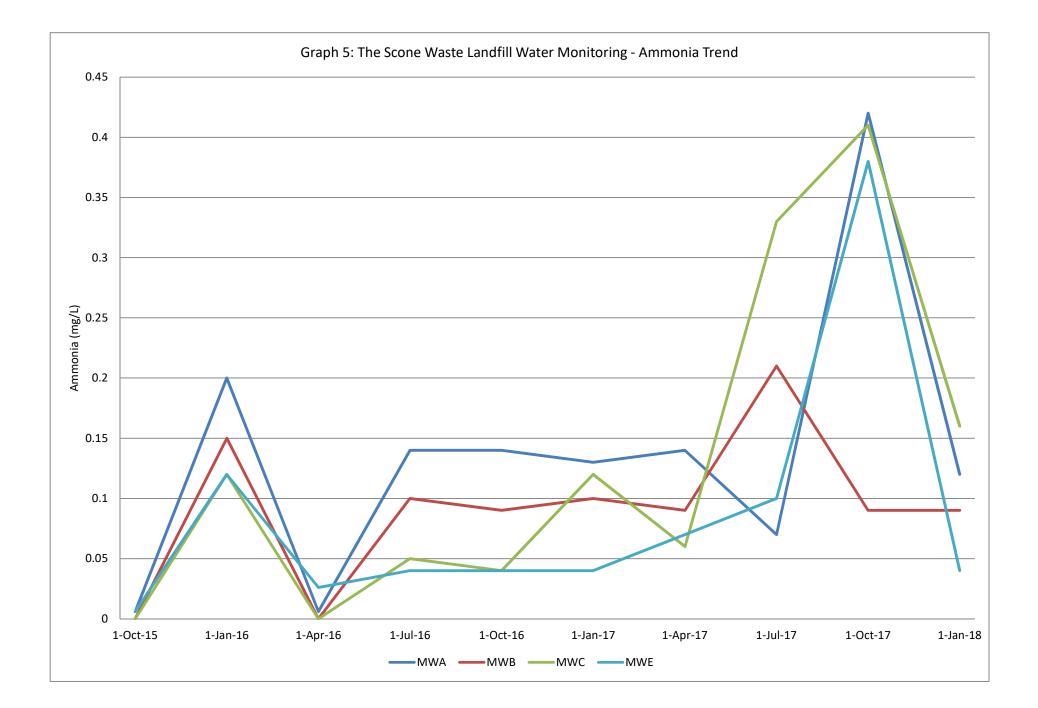
"We do more than give you great equipment... We give you great solutions!"

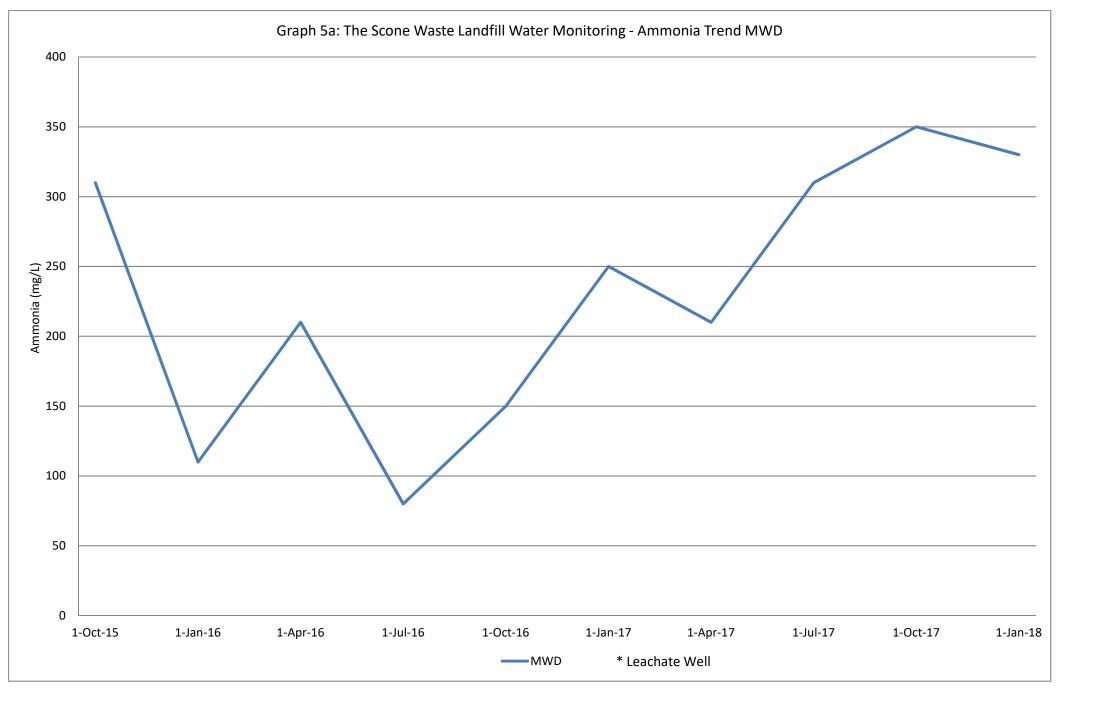

Phone: (Free Call) 1300 735 295	Fax: (Free Call) 1800 675 123	Email: RentalsAU@Thermofisher.com
Malbourne Branch Sydney Branch Soraribean Drive, Level 1, 4 Talevera Road, Soorasty 3170 North Ryde 2113	Adelaide Branch 27 Beulah Road, Norwood, South Australia 5067	Bistané Branch Perth Branch Unit 2/5 Ros St 121 Beringurra Ave Newstead 4006 Malaga WA 6090

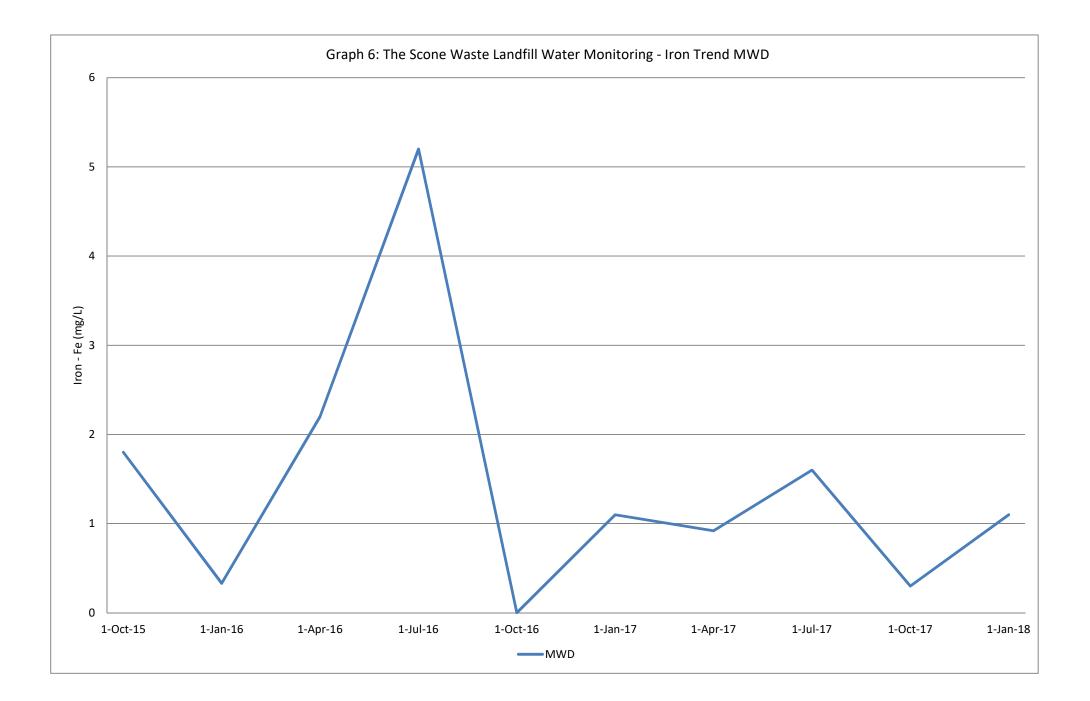

ATTACHMENT 3 – DATA LOG

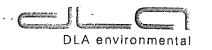

GROUNDWATER MONITORING DATA LOG THE SCONE WASTE LANDFILL


				Threshold Crite	ria NA	NA	NA	NA	0.3	NA	1.9	0.00001	. NA	6.5–8	NA	0.9	0.7	NA	4	0.32	NA	NA	NA	0.015	0.024 (III) 0.013 (V)	0.055 (pH> 6.5)	NA	0.0002	0.09	0.0014	0.001	NA	0.0034 0	.0006 0.0	08 0.26	5 0.95	0.18	0.08	NA	NA	6500	0.05	0.03	0.0003 0.0	00003 0	.016 0.00002
				Units	mg/L	mg/L	mg/L	mg/L	mg/L	mg/I	L mg/L	mg/L	mg/L	pН	mg/L	mg/L	mg/L	mg/L	mg/L ⊊	mg/L	μS/cm	mg/L 꿈	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	ng/L mg	/L mg/	L mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L n	ng/L n	ng/L mg/L
DLA Environ an ERM Gro				Analytes	Calcium														Ĕ			£	80																		1,1,1- Trichloroethane (TCA)	 Tetrachloroethene (PCE)	1,2-Dichlor oethene	Vinyl Chloride	PCBs	PAHS OPPS
			Ţ	Monitoring frequency	Quarterly	Quarterly	Quarterly	Quarterly	Quarterly	Quarterly	Quarterly	Quarterly	Quarterly	Quarterly	Quarterly	Quarterly	Quarterly	Quarterly	Quarterly	Quarterly	Quarterly	Yearly	Yearly	Yearly	Yearly	Yearly	Yearly	Yearly	Yearly	Yearly	Yearly	Yearly	Yearly	Yearly	Yearly	Yearly	Yearly	Yearly	Yearly	Yearly	Yearly	Yearly	Yearly	Yearly	Yearly	Yearly Yearly
Monitoring Well		Chemical Report	Date Sample	Comment																																					CVCs/VOC	Cs				
MWA MWB			6/10/2015 6/10/2015		620 650	440 370		0.1		1200 840		ND ND	3.2 2.6	6.8 6.9	2400 1900	0.006 ND	0.76 1.3	66 100	4	ND ND	19000 16000		N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	,	N/A N,				N/A N/A	N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A			N/A N/A N/A N/A
MWC	-		6/10/2015		62	730	690	0.3	ND	130		ND	0.6	7.1	670	ND	0.17	350	18	ND	3900	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A N			N/A	N/A	N/A		N/A	N/A N/A	N/A			N/A N/A
MWD			6/10/2015 6/10/2015	leachate	150 75	2400 700	2800 860	0.3	1.8 0.015	220		ND ND	170	7.6	1700 730	310 0.006	ND ND	66 140	330 8	ND ND	11000 4000	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A		N/AN,		,	N/A N/A	N/A N/A	N/A N/A		N/A N/A	N/A N/A	N/A N/A	,	,	N/A N/A N/A N/A
MWA	SE1	148082	14/01/2016		630	430	7800	ND	ND	1100	0.01	ND	4	7	2200	0.2	0.24	34	4.2	0.25	23000	16000	ND	0.22	0.001	ND	0.77	ND	ND	ND	ND	ND	ND	ND 0.0	09 ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND
MWB MWC			14/01/2016 14/01/2016		650 56	370 750	6000 630	ND 0.34	ND ND	810 110		ND ND	3.5 0.9	7	1700 590	0.15	1.3 ND	69 300	7 21	0.31 ND	18000 4300	15000 2400	ND ND	0.13	0.002	ND ND	0.62	ND ND	ND 0.011	ND 0.001	ND ND	0.001 ND		ND 0.0			ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND			ND ND
MWD			14/01/2016	leachate	170	1200	1000	0.32		110		ND	110	7.3	690	110	ND	18	140	0.47	5800	2500	48	0.13	0.017	ND	0.49	ND	0.004	ND	ND	0.031		ND 0.0							ND	ND	ND			0.004 ND
MWE			14/01/2016 7/04/2016		80 700	750 460	850 7300	0.35		79 1300	0.23	ND ND	1.1 3.1	7.4	690 2800	0.12	ND 0.62	200 43	10 3	0.02 ND	4600 18000	2200 N/A	ND N/A	0.25 N/A	0.005 N/A	ND N/A	0.048 N/A	ND N/A	0.002 N/A	ND N/A	ND N/A	ND N/A	110	ND N N/A N			ND N/A	ND N/A	ND N/A	140	ND N/A	ND N/A	ND N/A	140	140	ND ND N/A N/A
MWB MWC			7/04/2016		720 290	380 660	6300 3700	0.3	0.02	880 420		ND ND	2.6	7.1	2300 1900	ND ND	1.3 4.9	61 220	4 9	ND ND	15000 9600	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A		N/A N, N/A N			N/A N/A	N/A N/A	N/A N/A		N/A N/A	N/A N/A	N/A N/A	,	,	N/A N/A N/A N/A
MWD			7/04/2016	leachate	160	2200	2600	0.3	2.2	230		ND	1.4	7.2	1900	210	4.9 ND	35	290	ND	9600	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A		N/A N,		,	N/A	N/A N/A	N/A		N/A N/A	N/A N/A	N/A N/A	,	,	N/A N/A
MWE			7/04/2016		67	890 460	640 7900	0.5	0.034	72		ND ND	0.9	7.6	840 2200	0.026	0.01	160 35	7 6.1	ND 0.03	3200 21000	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A		N/AN,			N/A N/A	N/A N/A	N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A			N/A N/A N/A N/A
MWB			6/07/2016		650	390	6100	0.12	0.008			ND	3.1		1700	0.10	0.95	69	7.6	ND	16000	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A		N/A N				N/A	N/A		N/A	N/A N/A	N/A			N/A N/A
MWC MWD	-		6/07/2016 6/07/2016	leachate	55 250	730 1200	610 1000	0.24	0.006	93		ND ND	1.0	7.4	580 630	0.05 80	0.15 ND	220 140	24 140	ND 0.01	3300 5200	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	,	N/A N, N/A N	,	,	,	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	,	,	N/A N/A N/A N/A
MWE	SE1	154534	6/07/2016	leachate	57	970	470	0.30	0.021	66	0.430	ND	1.6	7.6	610	0.04	ND	110	16	ND	3100	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A N	'A N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A 1	N/A	N/A N/A
MWA MWB			6/10/2016 6/10/2016		580 600	430 360	7400 6000	0.15	ND 0.006	1100		ND ND	4.4	6.8 6.9	2100 1800	0.14	0.50	37 69	6.2 6.6	0.22	21000 17000	12000 10000	NA NA	NA	NA NA	NA NA	NA	NA	NA NA	NA NA	NA NA	NA NA		NA N	A NA A NA		NA	NA	NA NA	NA	NA	NA	NA NA			NA NA
MWC	SE1	157863	6/10/2016 6/10/2016	leachate	67 210	630 1600	770	0.34	ND 0.001	120 150		ND ND	1.1 140	7.1	620 1000	0.04 150	ND ND	180 110	24 200	ND 0.07	3900 7800	2400 4700	NA NA	NA	NA NA	NA NA	NA NA	NA	NA	NA NA	NA NA	NA NA		NA N			NA	NA NA	NA NA	NA NA	NA	NA NA	NA			NA NA NA NA
MWE	-		6/10/2016	leachate	61	900	560	0.27	0.001	67		ND	1.3	7.3	650	0.04	ND	120	16	0.07	3600	2100	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA N			NA	NA	NA	NA	NA	NA	NA	1473	1473	NA NA
MWA MWB			12/1/2017 12/1/2017		600 590	460 380	8200 6300	ND ND	ND ND	1200		ND ND	6	7.3	2100 1700	0.13	0.13	38 70	4	0.02	19000 16000	14000 13000	ND ND	0.059	NA NA	ND ND	0.59	ND ND	ND ND	ND ND	0.005 ND	0.001		ND 0.0			ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND			ND ND
MWC	SE1	160904	12/1/2017		44	830	880	0.13	ND	89	7.800	ND	2	7.6	510	0.12	ND	200	21	ND	4200	2400	ND	0.017	NA	0.006	0.05	ND	0.013	ND	ND	ND	ND	ND N	D ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND
MWD			12/1/2017 12/1/2017	leachate	260	2300 1100	2800 580	ND 0.18	1.100 0.021	230		ND ND	210	7.5	1400 610	250 0.04	ND ND	330 130	270 13	0.04 ND	11000 3500	6200 2100	170 ND	0.89	NA NA	0.014 ND	0.91	ND ND	0.017	ND 0.001	ND ND	0.03 ND		ND 0.0			0.0009 ND	0.0034 ND	0.042 ND	ND ND	ND ND	ND ND	ND ND			0.017 ND ND ND
MWA	SE1	164082	6/4/2017		570		7700	0.14	ND	1100	0.006	ND	3.1	6.8	2200	0.14	0.24	39	6.4	0.16	21000	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A N	A N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A 1	N/A	N/A N/A
MWB MWC			6/4/2017 6/4/2017		580	360 670	6000 520	0.27		760		ND ND	2.8	6.6 7.1	1700 540	0.09	0.71 ND	77 120	6.8 23	0.02 ND	17000 2900	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A		N/A N, N/A N			N/A N/A	N/A N/A	N/A N/A		N/A N/A	N/A N/A	N/A N/A		,	N/A N/A
MWD	SE1	164082	6/4/2017	leachate	260	1500	2200	0.28	0.920	190	0.780	ND	130	7.3	1200	210	ND	310	150	0.19	9400	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A N	'A N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A 1	N/A	N/A N/A
MWE	-	164082 167897	6/4/2017 6/7/2017		34 640	1100 470	360 7900	0.52	0.006 ND	67 1200		ND ND	0.9 4.3	7.3	530 2200	0.07	ND 0.24	110 42	20 8	ND ND	3200 21000	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A		N/A N, N/A N,	,	,	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	,	,	N/A N/A N/A N/A
MWB	SE1	167897	6/7/2017		640	390	6000	0.26	ND	820	0.01	ND	4	7	1800	0.21	0.83	75	8.2	ND	16000	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A		N/A N	'A N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	,	,	N/A N/A
MWC MWD		167897 167897	6/7/2017 6/7/2017	leachate	26 150	640 2500	370 2800	0.46	0.008	52 230		ND ND		7.2	430 1700	0.33 310	0.005 ND	90 100	23 320	ND 0.05	2400 12000	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A		N/A N, N/A N,			N/A N/A	N/A N/A	N/A N/A		N/A N/A	N/A N/A	N/A N/A			N/A N/A N/A N/A
MWE	SE1	167897	6/7/2017		60	1200	340	0.5	0.077	65	0.14	ND	1.5	7.5	570	0.1	ND	99	26	ND	3100	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A N	A N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	,	,	N/A N/A
MWA MWB			6/10/2017 6/10/2017		600 610	470 380	7600 6000	0.14	0.034	1100		ND ND	4.9	6.6 6.7	2000 1600	0.42	0.41 0.75	43 70	5 6	ND ND	20000 16000	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	,	N/A N, N/A N,			N/A N/A	N/A N/A	N/A N/A		N/A N/A	N/A N/A	N/A N/A		'	N/A N/A N/A N/A
MWC	SE1	171359	6/10/2017		35	720	500	0.41	ND	73	4.60	ND	0.9	7.1	490	0.41	ND	110	19	ND	3000	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A N	'A N/A	N/A	N/A	N/A	N/A		N/A	N/A	N/A		,	N/A N/A
MWD			6/10/2017 6/10/2017	leachate	190 56	2500 1100	3700 310	0.32				ND ND	210.0 1.4	7.2	1800 520	350 0.38	ND ND	240 110	320 17	0.03 ND	13000 3000	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A		N/A N, N/A N,			N/A N/A	N/A N/A	N/A N/A		N/A N/A	N/A N/A	N/A N/A		,	N/A N/A N/A N/A
MWA MWB			12/1/2018 12/1/2018		590 600	490 420	7200 5400	0.13		1200		ND ND		7.0	2000	0.12	ND ND	40 66	5.6 6.2	<0.01	20000		ND ND	0.06	0.001	ND ND	0.62	0.0002 ND	ND ND	ND ND	0.006	0.002		ND 0.0			ND	ND ND	ND		ND ND	ND	ND ND			ND ND
MWC	SE1	174394	12/1/2018		200	580	2400	0.26	ND	330	12	ND	1.8	6.9	1100	0.16	1.7	110	12	<0.01	8700	5300	ND	ND	ND	0.01	0.27	ND	0.024	0.004	ND	ND	ND	ND N	D ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND
MWD			12/1/2018 12/1/2018	leachate	160 56	2400 1200	3100 280	0.30			0.290			7.7	1900 520	330 0.04	ND ND	93 91	340 15	0.03 ND			29 ND	0.06	0.01	ND ND	1.10	ND 0.0002	0.032		0.006 ND	0.050 ND		ND 0.0		6 0.0035 ND	0.0012 ND				ND ND	ND ND	ND ND			0.006 ND ND ND
IVIVVE	361	1/4374	12/1/2018			1200	200	0.47	0.010	1 33										1																			ND	ND			ND			
							-				*As MWD	is within th	e perched la	ndfill leachat	e water tabl	e, the Three	shold Criteri	a are only a	pplicable as	s indicators	of general	water qualit	y for comp	parison to the	wells surroun	ding the landf	fill. Exceeda	ances of the	Threshold C	riteria for M\	ND are expe	ected and do	not indicate	ontamination	is leaving the	e site.										
L						I	1			1			1	1	I					1	1	1	1	1	1	1	1	1	1	<u> </u>								1	1		1					


ATTACHMENT 4 – ANALYTE TREND GRAPHS



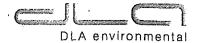




ATTACHMENT 5 – GROUNDWATER FIELD DATA

	<i>4</i> ∧
DLA Project Code: DLH1186	Sample ID:
Project: The Scone Waste Landfill	Well Collar RL:
Client: Client: Council	Sampler(s): KS
Address: Noblet Rd, Scone NSW 2289	Signature: WM
BH ID: MWA	Date: 15-1-18

Well Status						
Monument damaged:	YES / NO / N/A	Well ID visible:		[*	YE9 / NO / N/A	
Locked well casing:	YES / 🔞 N/A	Cap on PVC casin	g:	2	PES)/ NO / N/A	
Cement footing damaged:	YES NO / N/A	Water in monum	ent casing:		YES (NO / N/A	
Standing water vegetation around monument:	VES / NO / N/A	Internal obstructi	on in casing:		YES NO / N/A	
Well Damaged:	YES (NO) / N/A	Odours from grou	undwater:		YES / NO% N/A	
Nearby works:		****			0.	
comments: Rusted Mount						
Casing above ground: 6.75	m agl	Weather Condit	ions:			
Standing water level: (6-53 (5-78)	m bgl	Temperature	15-20 🗖	20-25 D		
Total well depth: 15	m bgl		25-30 🗖	>30 🗆		
Initial well volume:	L.			_		
Water level after purging:	m bgl	Clear 🗖	Partly clo	oudy 🗹	Overcast	
Volume of water purged:	L					
Water level at time of sampling:	m bgl	Calm 🗖	Slight bre	eeze 🎗	Moderate bre	eze 🗆
Well purged dry:	YES		Windy			
Purging equipment:	<u> </u>				,	
Sample equipment: TMI		Fine	Showers		Rain	


Note: 50mm Internal diameter pipe = 1.96 L/m. All measurements below well collar

Water Quality Details: M

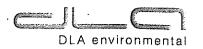
Time am / pm	DO tmg/L-1	EC (µS cm ¹)	рН	Redox (mV)	Temp (°C)	Salinity (% Refract)	Comments
9.57	9.07	8.31	3.9	238	21.0		
10.00	9.03	8.10	3.9	241	21-1		
10-02	897	7.99	3.9	243	$\lambda(.2)$		

Additional Comments:

Clear Fine mite sed

	MWB-
DLA Project Code: DLH1186	Sample ID:
Project: The Scone Waste Landfill	Well Collar RL:
Client: Council	Sampler(s): K·>
Address: Noblet Rd, Scone NSW 2289	Signature:
BH ID: MWB	Date: 15.1.18

Well Status Monument damaged: YES / NO/ N/A YES / NO / N/A Well ID visible: Locked well casing: YES (NO)/ N/A (ES/ NO / N/A Cap on PVC casing: Cement footing damaged: YESY NO / N/A YES AND N/A Water in monument casing: YES /00 N/A Standing water, vegetation around monument: (YES/ NO / N/A Internal obstruction in casing: YES NOT NA YES NO N/A Well Damaged: Odours from groundwater: Nearby works: Comments: OND Weather Conditions: m agl Standing water level: 79 20-25 0 m bgl Temperature 15-20 🗖 Total well depth 216-24 15.42 m bgl 25-30 🗖 >30 🗆 Initial well volume: ... L Water level after purging: Partly cloudy Z m bgi Clear 🛙 Overcast Volume of water purged: L Water level at time of sampling: Calm 🗖 Slight breeze m bgly Moderate breeze Well purged dry: YES / NO Windy **Purging equipment:** Sample equipment: Fine 🗹 Showers Rain


Note: 50mm internal diameter pipe = 1.96 L/m. All measurements below well collar

Rem Water Quality Details: MS

Time am / pm	DO (mg/4-1)	ЕС - (µS cm⁻¹)	рН	Rèdox (mV)	Temp (°C)	Salinity (% Refract)	Comments
	9.31	7.40	3.90		21.3		
10-34	9.14		3.96	269	219		
10-24	9.04	6.81		272	22.2		
······································		-			:		
							,

Additional Comments:

Clearly ble white red

1

DLA Project Code: DLH1186	Sample ID:
Project: The Scone Waste Landfill	Well Collar RL:
Client: Council Upper Hunter Shire Council	Sampler(s):
Address: Noblet Rd, Scone NSW 2289	Signature:
BH ID: MWC	Date:

YES / NO / N/A	Well ID visible:		2	ES NO / N/A	
YES / NA	Cap on PVC casin	g;	ł	YES NO / N/A	
YES / NO / N/A	Water in monum	ent casing:			
YES / NO / N/A	Internal obstructi	on in casing:			
YES NO N/A	Odours from grou	Indwater:			
·····		******			
<u>ructory</u>					

m agl	Weather Condit	ions:			
m bgl	Temperature	15-20 🗆	20-25 E	•	
m bgl		25-30 🗆	>30 🛛		
L					
m bgi	Clear 🗖	Partly clo	oudy 🗹	Overcast	
L					
m bgl	Calm 🗖	Slight bre	eeze 🗹	Moderate bre	eze 🗆
YES //NO)		Windy			
\bigcirc	<u> </u>				
	Fine P	Showers		Rain	
	YES / NO / N/A YES / NO / N/A YES / NO / N/A YES / NO / N/A YES / NO / N/A	YES / WB / N/A Cap on PVC casin YES / WD / N/A Water in monum YES / NO / N/A Internal obstructi YES / NO / N/A Odours from grou wage Weather Condit m bgl Temperature m bgl L m bgl Clear D L m bgl Calm D	YES / 100 / N/A Cap on PVC casing: YES / 100 / N/A Water in monument casing: YES / 100 / N/A Internal obstruction in casing: YES / 100 / N/A Internal obstruction in casing: YES / 100 / N/A Odours from groundwater:	YES / 100 / N/A Cap on PVC casing: YES / 100 / N/A Water in monument casing: YES / NO / N/A Internal obstruction in casing: YES / 100 / N/A Odours from groundwater: Mage: Structure 15-20 Mage: Structure 15-20 Mage: Structure 15-20 YES / 100 N/A Odours from groundwater: 0 Mage: Structure 15-20 YES / 100 20-25.27 Mage: Structure 15-20 YES / 100 20-25.27 Mage: Structure 15-20 YES / 100 20-25.27 Mage: Structure 15-20 YES / 100 YES / 100	YES / NO / N/A Cap on PVC casing: YES / NO / N/A YES / NO / N/A Water in monument casing: YES / NO / N/A YES / NO / N/A Internal obstruction in casing: YES / NO / N/A YES / NO / N/A Internal obstruction in casing: YES / NO / N/A YES / NO / N/A Internal obstruction in casing: YES / NO / N/A YES / NO / N/A Internal obstruction in casing: YES / NO / N/A YES / NO / N/A Odours from groundwater: YES / NO / N/A Mage: Weather Conditions: YES / NO / N/A m bgl Temperature 15-20 □ 20-25.2 m bgl Temperature 15-20 □ 20-25.2 m bgl Clear □ Partly cloudy I Overcast L m bgl Clear □ Partly cloudy I Overcast L Moderate bree Windy □ Vindy □ I

Note: 50mm internal diameter pipe = 1.96 L/m. All measurements below well collar

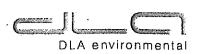
Water Quality Details:

Time am / pm	DO (<u>mg/L-1</u>)	EC (<u>µS-cm⁻¹)</u>	pН	Redox (mV)	Temp (°C)	Salinity (% Refract)	Comments
11.01	4.51	5 .75	3.80	244	21.4	<u> </u>	
11.03	8.81	5-84	3.81	24)	21-8		
11.05	8-83	<u>८</u> .४३	3.83	240	22.3		
					e	د	
				¢			
							· · · · · · · · · · · · · · · · · · ·

Additional Comments: (file seds) how la Cloud r a

DLA Project Code: DLH1186	Sample ID: //////
Project: The Scone Waste Landfill	Well Collar RL:
Client: Client: Upper Hunter Shire Council	Sampler(s):
Address: Noblet Rd, Scone NSW 2289	Signature:
BH ID: MWD	Date: 15-7-16

Weil Status							
Monument damaged:	YES / NO / N/A	Well ID visible:		•	YES / NO) N/A		
Locked well casing:	YES / NO A	Cap on PVC casing	g:	,	ES NO N/A		
Cement footing damaged:	FES / NO (N/A)	Water in monum	ent casing:	Y	YES (NO) N/A		
Standing water, vegetation around monument:	YES NO/W/A	Internal obstructi	on in casing:	١	YES / NO / N/A		
Well Damaged:	YES NO / N/A	Odours from grou	indwater:	١	YES / NO / N/A		
Nearby works:	******						
	** * * * * * * * * * * * * * * * * * * *	******	•••				
Comments:	*****	*****	344+344				
*****			•••				
Casing above ground:	m agl	Weather Condit	ions:				
Standing water level: 9.55	m bgl	Temperature	15-20 🗆	20-25 ZI			
Total well depth:	m bgl		25-30 🗆	>30 🗆			
initial well volume:	L						
Water level after purging:	m bgi	Clear 🗖	Partly clo	udy,E	Overcast		
Volume of water purged:	L						
Water level at time of sampling:	m bgl	Calm 🗖	Slight bro	eeze 🗹	Moderate bre	eze 🛙	
Well purged dry:	YES / NO		Windy				
Purging equipment:	•	/	· ·				
Sample equipment: Barla		Fine 🗹	Showers		Rain		


Note: 50mm Internal diameter pipe = 1.96 L/m. All measurements below well collar

Water Quality Details: W

Time am / pm	DO (mg/t-1)	EC (µS cm ⁻¹)	pH	Redox (mV)	Temp (°C)	Salinity (% Refract)	Comments
12.15	7.45	11-32	3 92	244	28.9		
12-18	7.44	11.22	3.96	244	28.6		
12.20	7.95	11 32	2.89		28.4.		
-			•				

Additional Comments:

puizd male due rof 10 low lare Ŷ١ KIM óla Sed Odorou 5 612 DLA Environmental Services FIELD DATA SHEET UPDATED 18/09/2014

	Allato
DLA Project Code: DLH1186	Sample ID: ////
Project: The Scone Waste Landfill	Well Collar RL:
Client: Client: Council	Sampler(s):
Address: Noblet Rd, Scone NSW 2289	Signature:
BH ID: MWE	Date:

Well Status					-	
Monument damaged:	NES / NO / N/A	Well ID visible:	سىر	Ć	ES NO / N/A	
Locked well casing:	YES / N/A	Cap on PVC casin	g:	7	ES NO / N/A	
Cement footing damaged:	YES / NO / N/A	Water in monum	ent casing:		YES / ND/ N/A	
Standing water, vegetation around monument:	YES / NO / N/A	Internal obstructi	on in casing:		res / NQ / N/A	
Well Damaged:	YES //NO / N/A	Odours from grou	undwater:	•	ES /NO / N/A	
Nearby works:			*****		\cup	
Comments: Slightly MS Frog						
Casing above ground:	m agl	Weather Condit	ions:			
Standing water level: 3.9 (3.23)	m bgl	Temperature	15-20 🗖	20-25,21		
Total well depth:	m bgl		25-30 🗖	>30 🗆		
Initial well volume:	L					
Water level after purging:	m bgl	Clear 🗖	Partly clo	udy 🗹	Overcast	
Volume of water purged:	L					
Water level at time of sampling:	m bgl	Calm 🗖	Slight bre	eeze 🗆	Moderate bre	eze -🗹
Well purged dry:	YES / NO		Windy			
Purging equipment:						
Sample equipment: LATR		Fine 🖒	Showers	p	Rain	

Note: 50mm internal diameter pipe = 1.96 L/m. All measurements below well collar

وم المربق Water Quality Details:

Time am / pm	DO (mg/[-1)	EC (µS cm=1)	рН	Redox (mV)	Temp (°C)	Salinity (% Refract)	Comments
1.45	8.65	1477	3 81	260	20.8	-	
11.47	6.83	143-7	z .S	260	21.4		
11-49	6 83	1424	3.82	261	21.7		
	<u> </u>						
•							

Additional Comments:

Roo ilan WA DN pro S CA FIELD DATA SHEET UPDATED 18/09/2014 X Δ ~ DLA Environmental Services