

PROJECT NUMBER – E2424-0924 SEPTEMBER 2024

Document Control Number – Bo476

E: admin@engage-es.com.au

M: 0478 362 005

ENGAGE ENVIRONMENTAL SERVICES

ABN 13 629 353 662

GROUNDWATER MONITORING

SCONE WASTE FACILITY NOBLET ROAD SCONE NSW

DOCUMENT CONTROL INFORMATION

FIELD OFFICE

Unit 1, 104 George St

Singleton NSW 2330

Project Name - Groundwater Monitoring - Scone Waste Facility - Annual Monitoring Round

Client - Upper Hunter Shire Council

Project Number – E2424-0924

Prepared - Damien Bucior

Reviewed By and Approved for Release By -STC

Date - 25-09-2024

OFFICE 113 Reservoir Rd Glendale NSW 2285

Ph: 0478 362 005 Ph: 0478 364 588

Email: admin@engage-es.com.au

Engage Environmental Services Pty Limited: ABN 13 629 353 662

WAIVER/DISCLAIMER/LIMITATION

The information contained in these documents is confidential, privileged and only for the information of the intended recipient and may not be used, published or redistributed without the prior written consent of Engage Environmental Services Pty Limited (Engage). Engage undertakes all exercises with reasonable skill and professional attention in the provision of services, including advice to the Client.

The opinions expressed are in good faith and while every care has been taken in preparing these documents, Engage makes no representations and gives no warranties of whatever nature in respect of these documents, including but not limited to the accuracy or completeness of any information, facts and/or opinions contained therein.

Engage, the directors, employees and agents cannot be held liable for the use of and reliance of the opinions, estimates, assumptions and findings in these documents.

Responsibility and any liability arising from misinterpretation or misuse by third parties as to the contents of the reports are not Engage's responsibility and will not be liable.

Information supplied, in electronic form, print form or verbally expressed to Engage is not verified for accuracy, validity, completeness or comprehensiveness unless part of the project being undertaken is a third-party view. Information supplied is deemed to be complete and accurate.

Where site inspections, monitoring, or other fieldwork have taken place, the report is based on the information supplied by the client, observations, laboratory results and any discussions with regulatory authorities.

ABBREVIATIONS

The following is a list of common abbreviations used in the Contamination Sector within environmental reports.

Benzo(a)Pyrene B(a)P Below Ground Level **BGL**

Benzene, Toluene, Ethyl Benzene, Xylene **BTEX**

CLM Contaminated Land Management

CSM Conceptual Site Model DA **Development Application**

DP Deposited Plan

Data Quality Indicator DQI DQO Data Quality Objective

Ecological Investigation Level EIL

Environment Protection Authority (NSW) EPA

EPL Environmental Protection License ESL Ecological Screening Level

Limit of Reporting LOR

Allotment LOT Monitoring Well MW

National Association of Testing Authorities **NATA** National Environment Protection Council NEPC **NEPM** National Environment Protection Measure

NSW New South Wales

Organochlorine Pesticides **OCP**

OEH Office of Environmental and Heritage Organophosphorus Pesticides **OPP PAH** Polycyclic Aromatic Hydrocarbons Potential Contaminant of Concern **PCOC PCB** Polychlorinated Biphenyls

Quality Assurance and Quality Control QA/QC

SAC Site Acceptance Criteria

SEPP State Environmental Planning Policy

Standing Water Level **SWL**

Toxicity Characteristic Leaching Procedure **TCLP**

Total Recoverable Hydrocarbons TRH Upper Hunter Shire Council **UHSC** Volatile Organic Compounds VOC

WHS Work Health Safety

TABLE OF CONTENTS

1.0	INTRODUCTION.	
Gen	eral	
Brie	efing	1
2.0	SITE CRITERIA A	ND SAMPLING FREQUENCY2
3.0	SAMPLING METH	IODOLOGY4
Gro	undwater Samplin	1g 4
4.0	RESULTS	
5.0	DISCUSSION	
MW	E	
Site	and Maintenance	20
6.0	CONCLUSIONS	
REFE	RENCES	22
FIGU	RES	
F:		
Figur	e 1	Site layout with sample locations
ATTA	CHMENTS	
A.L. -1	h	Data la c
	hment 1	Data log
	hment 2	NATA Accredited Laboratory Results
	hment 3	Groundwater Field Data Sheets
Attac	hment 4	Hanna Multiparameter Water Quality Meter calibration certificate

1

1.0 INTRODUCTION

General

Under the requirements of the NSW EPA Environmental Protection Licence (EPL) 5863, Upper Hunter Shire Council (UHSC) is required to conduct quarterly and annual groundwater monitoring of the Scone Waste Facility located on Noblet Road, Scone, NSW, 2337.

The Annual Groundwater Monitoring Report provides a snapshot and trending of analytes of the groundwater conditions at the Site in relation to the current Site Criteria and satisfies the groundwater monitoring requirements of the EPL.

The Scone Waste Facility is an active landfill, it has the potential to be a polluting activity or to adversely impact the groundwater within the immediate vicinity and down hydraulic gradient of the site if there was a leak within the landfill.

Engage Environmental Services (Engage) was commissioned by UHSC to undertake this annual round of groundwater monitoring at the site. The annual groundwater monitoring was carried out on 16th September 2024.

This report has been prepared utilising information supplied by the client, publicly accessible information, information obtained as part of the onsite fieldwork and analysis, information from Government bodies and from experience, knowledge, and current industry practice.

Briefing

The briefing provided by Upper Hunter Shire Council and contained within EPL 5863 indicates that quarterly groundwater monitoring is required at five locations on the site, monitoring wells A to E (MWA-MWE). As well as a dam located onsite. Monitoring Well D is located within the landfill and the monitoring well accesses the perched water table (leachate) within the landfill. Comparisons against established criteria and historical data allow for trending of data. Trending of data can highlight seasonal variations, increases in analyte concentrations, decreases in analyte concentrations and fluctuations within the dataset. Over a time period the dataset can reveal increasing/decreasing trends highlighting potential site issues.

Refer to **Figure 1**: Site Layout with Sample Locations

2.0 SITE CRITERIA AND SAMPLING FREQUENCY

The groundwater analytical suite and sampling frequency were provided by UHSC and the EPL. Each of the wells have the same sampling regime and analytical suite for sample analysis. The site criterion is sourced from the Australian and New Zealand guidelines for fresh and marine water quality (ANZW 2018) 95% trigger values and National Environment Protection (Assessment of Site Contamination) Measure (NEPM) 2013, unless otherwise stated.

Table 1: Analytes, Site Criteria and Sampling Frequency for Groundwater Monitoring Wells.

	Analytes/Pollutant	Units	Site Criteria NEPM 2013 and ANZW 2018 Fresh Water 95%	Sampling Frequency
	Calcium	mg/L	NA	Quarterly
	Alkalinity (total)	mg/L	NA	Quarterly
	Chloride	mg/L	NA	Quarterly
IONS	Fluoride	mg/L	NA	Quarterly
	Potassium ¹	mg/L	410	Quarterly
	Magnesium	mg/L	NA	Quarterly
	Sulphate	mg/L	NA	Quarterly
	Iron	mg/L	0.3	Quarterly
	Manganese	mg/L	1.9	Quarterly
	Arsenic III & V	mg/L	0.024 (III), 0.013 (V)	Yearly
	Aluminium	mg/L	o.o55 (pH> 6.5)	Yearly
	Barium	mg/L	NA	Yearly
HEAVY	Cadmium	mg/L	0.0002	Yearly
	Cobalt	mg/L	0.001	Yearly
METALS	Copper	mg/L	0.0014	Yearly
	Chromium VI	mg/L	0.001	Yearly
	Chromium III	mg/L	27	Yearly
	Lead	mg/L	0.0034	Yearly
	Mercury	mg/L	0.0006	Yearly
	Zinc	mg/L	0.008	Yearly
PHENOL	Total phenolics	mg/L	0.32	Quarterly
ОСР	Organochlorine Pesticide ³ (OCP)	mg/L	0.00001	Quarterly
OPP	OPPs	mg/L	0.006	Yearly

РСВ	PCBs	mg/L	0.00001	Yearly
Hydrocar	TRH	mg/L	0.26	Yearly
bons	Benzene	mg/L	0.95	Yearly
	Toluene	mg/L	0.18	Yearly
	Ethylbenzene	mg/L	0.3	Yearly
	Xylene (o+p)	mg/l	0.35	Yearly
	PAHs	mg/L	0.016	Yearly
CVCs/	- Total	mg/L	NA	Yearly
VOCCs	Tetrachlorethene (TCE)	mg/L	NA	Yearly
	1,1,2-Trichloroethane	mg/L	6.5	Yearly
	Tetrachloroethene (PCE)	mg/L	0.05	Yearly
	1, 1-Dichloroethene	mg/L	0.03	Yearly
	Vinyl Chloride	mg/L	0.0003	Yearly
	рН	pН	6.5 – 8	Quarterly
	Sodium	mg/L	NA	Quarterly
	Ammonia ²	mg/L	0.9	Quarterly
MISC.	Nitrate	mg/L	50	Quarterly
INORGA	Total organic carbon	mg/L	4	Quarterly
	Electrical conductivity	μS/cm	NA	Quarterly
NICS	Total dissolved solids	mg/L	NA	Yearly
	Biochemical Oxygen	mg/L	NA	Yearly
	Phosphate	mg/L	0.015	Yearly
<u></u>				

^{1 -} World Health Organisation Guidelines for Drinking-water Quality 2009, Poor (acceptable) drinking water

^{2 -} Criteria value may not protect key species from chronic toxicity, refer to ANZW 2018 for further guidance. 3 - A Trigger value for DDT is used in the absence of a criteria value for Total OCP. DDT has the lowest criteria of OCPs.

3.0 SAMPLING METHODOLOGY

Groundwater Sampling

The five well locations were identified on the site. The site map was cross-referenced to the markings on the monitoring wells to ensure the correct wells were being sampled. Purging and sampling of monitoring wells was conducted in accordance with the NEPM (NEPC, 2013) and the *Guidelines for the Assessment and Management of Groundwater Contamination* (NSW DECC, 2007).

Purging is the process of removing stagnant water from a well, immediately prior to sampling, causing its replacement by groundwater from the adjacent formation that is representative of actual aquifer conditions. In order to determine when a well has been adequately purged, the physical parameters (pH \pm 0.1 unit, electrical conductivity \pm 5%, temperature \pm 0.20, reduction-oxidation (redox) \pm 10%; and dissolved oxygen \pm 10%.) are monitored while the groundwater is removed during purging.

The physical parameters were measured at regular intervals using a Hanna Instruments H198494 Multiparameter Water Quality Meter. Stable conditions were indicated by monitoring for three consecutive readings of the physical parameters.

Collection of samples were direct into laboratory issued sampling containers for specific analytes. Samples were obtained using a disposable bailer. Care was taken so the bailer did not contact the sample container. All samples were collected and filled into the correct sample containers, a meniscus was formed on each sampling container prior to sealing to reduce or eliminate head space. The samples were placed immediately into a chilled esky to prevent the loss of potential volatile components.

Decontamination procedures between sampling events and sampling locations was undertaken. Sampling equipment was cleaned before and after sampling to prevent cross contamination. The cleaning procedure included:

- New nitrile disposable gloves for each well;
- Washing and wipe down with phosphate free laboratory grade detergent;
- Rinsing of brush before using brush on equipment;
- Using a brush on equipment if necessary;
- Rinsing with deionised water and wipe down with new wipe if necessary; and,
- New disposable bailer used for each well.

Appropriate decontamination procedures were appropriate during groundwater sampling.

4.0 RESULTS

The five groundwater monitoring wells were sampled during the September 2024 sampling event. Results are detailed in **Tables 2** to **11**. Comparisons have been made to the previous quarterly rounds of 2023 / 2024 monitoring (December 2023, March and June 2024) also the yearly monitoring of September 2023. Refer to **Attachment 2** – NATA Accredited Laboratory Results and **Attachment 1** – Data Log.

Table 2 - Quarterly Analytes Groundwater Results and Comparison (MWA)

			Site	MWA	MWA	MWA	MWA	MWA
	Analytes	Units	Criteria	Sept	Jan	March	June	Sept
			(mg/L)	2023	2024	2024	2024	2024
	Calcium	mg/L	NA	570	570	570	540	570
	Alkalinity	mg/L	NA	540	560	530	490	550
	Chloride	mg/L	NA	8000	7200	6500	7300	6500
IONS	Fluoride	mg/L	NA	0.1	0.1	0.2	0.2	0.1
	Potassium ¹	mg/L	410	4	4	3	3	4
	Magnesium	mg/L	NA	1100	1200	1100	1000	1100
	Sulphate	mg/L	NA	62	100	62	53	63
HEAVY	Iron	mg/L	0.3	0.01	<lor< th=""><th><lor< th=""><th><lor< th=""><th>0.03</th></lor<></th></lor<></th></lor<>	<lor< th=""><th><lor< th=""><th>0.03</th></lor<></th></lor<>	<lor< th=""><th>0.03</th></lor<>	0.03
METALS	Manganese	mg/L	1.9	0.07	0.038	0.006	0.028	0.045
Phenols	Total phenolics	mg/L	0.32	<lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<></th></lor<>	<lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<>	<lor< th=""><th><lor< th=""><th><lor< th=""></lor<></th></lor<></th></lor<>	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
OCPs	OCP ³	mg/L	0.00001	<lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<></th></lor<>	<lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<>	<lor< th=""><th><lor< th=""><th><lor< th=""></lor<></th></lor<></th></lor<>	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
	pН	pН	6.5 – 8	6.9	7.0	7.3	6.9	7.0
	Sodium	mg/L	NA	2000	2000	2200	1800	2100
MISC.	Ammonia ²	mg/L	0.9	0.043	0.066	0.26	0.16	0.051
INORGANICS	Nitrate	mg/L	0.7	0.59	0.6	0.55	0.54	0.55
	Total Organic C	mg/L	4	5	9	5	4	4
	EC	μS/cm	NA	20000	19000	19000	19000	20000

<LOR = No Detection. Analyte is below the Laboratory LOR

^{1 -} World Health Organisation Guidelines for Drinking-water Quality 2009, Poor (acceptable) drinking water criteria.

^{2 -} Criteria value may not protect key species from chronic toxicity, refer to ANZW 2018 for further guidance.

^{3 -} A Trigger value for DDT is used in the absence of a criteria value for Total OCP. DDT has the lowest criteria of OCPs.

Table 3 – Yearly Analytes Groundwater Results and Comparison Sept 2023-Sept 2024 (MWA)

Sampling Parameter	Units	Threshold Criteria (mg/L)	MWA Sept 2023	MWA Sept 2024
Total dissolved solids	mg/L	NA	14000	13000
Biochemical Oxygen Demand	mg/L	NA	· <lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
Phosphate	mg/L	0.015 ^G	0.076	0.073
Arsenic III & V	mg/L	0.024 (III), 0.013	0.001	0.001
Aluminium	mg/L	o.o55 (pH> 6.5)	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
Barium	mg/L	NA	0.57	0.57
Cadmium	mg/L	0.0002	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
Copper	mg/L	0.0014	0.01	0.01
Chromium VI	mg/L	0.004	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
Chromium (Total)	mg/L	27	0.004	0.005
Cobalt	mg/L	0.09	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
Lead	mg/L	0.0034	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
Mercury	mg/L	0.0006	0.00006	<0.00005
Zinc	mg/L	0.008 ^D	0.025	0.029
TRH	mg/L	0.26 ^I	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
Benzene	mg/L	0.95	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
Toluene	mg/L	0.18 ^L	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
Ethylbenzene	mg/L	0.08^{L}	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
Xylene			<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
CVCs/VOCCs:				
- Total	mg/L	NA	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
- Tetrachlorethene (TCE)	mg/L	NA	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
- 1,1,2-Trichloroethane	mg/L	6.500	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
- Tetrachloroethene (PCE)	mg/L	0.05^{N}	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
- 1,1-Dichloroethene	mg/L	0.03 ^p	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
- Vinyl Chloride	mg/L	$\rm o.ooo3_{N}$	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
PCBs	mg/L	0.00003 ^A	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
PAHs	mg/L	0.016 ^B	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
OPPs	mg/L	0.00002 ^C	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>

Table 4 – Quarterly Groundwater Results and Comparison (MWB)

	Analytes	Units	Site Criteria (mg/L)	MWB Sept 2023	MWB Jan 2024	MWB March 2024	MWB June 2024	MWB Sept 2024
	Calcium	mg/L	NA	470	480	470	410	480
	Alkalinity	mg/L	NA	440	470	450	460	490
	Chloride	mg/L	NA	5200	4700	4300	4600	4200
IONS	Fluoride	mg/L	NA	0.2	0.3	0.3	0.3	0.3
	Potassium ¹	mg/L	410	4	3	2	3	4
	Magnesium	mg/L	NA	630	640	620	520	640
	Sulphate	mg/L	NA	110	100	93	91	97
HEAVY METALC	Iron	mg/L	0.3	<lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""><th>0.03</th></lor<></th></lor<></th></lor<></th></lor<>	<lor< th=""><th><lor< th=""><th><lor< th=""><th>0.03</th></lor<></th></lor<></th></lor<>	<lor< th=""><th><lor< th=""><th>0.03</th></lor<></th></lor<>	<lor< th=""><th>0.03</th></lor<>	0.03
HEAVY METALS	Manganese	mg/L	1.9	0.016	0.013	0.014	0.008	0.007
ОСР	OCP ³	mg/L	0.00001	<lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<></th></lor<>	<lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<>	<lor< th=""><th><lor< th=""><th><lor< th=""></lor<></th></lor<></th></lor<>	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
PHENOLS	Total phenolics	mg/L	0.32	<lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<></th></lor<>	<lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<>	<lor< th=""><th><lor< th=""><th><lor< th=""></lor<></th></lor<></th></lor<>	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
	pН	pН	6.5 – 8	6.9	7.1	7.5	7.1	7.0
	Sodium	mg/L	NA	1400	1400	1600	1300	1500
MISC.	Ammonia ²	mg/L	0.9	0.037	0.03	0.033	<lor< th=""><th>0.034</th></lor<>	0.034
INORGANICS	Nitrate	mg/L	0.7	0.26	0.26	0.19	0.19	0.24
	Total Organic C	mg/L	4	9	14	7	7	7
	EC	μS/cm	NA	14000	13000	13000	13000	14000

<LOR = No Detection. Analyte is below the Laboratory LOR

 $¹⁻World\ Health\ Organisation\ Guidelines\ for\ Drinking-water\ Quality\ 2009,\ Poor\ (acceptable)\ drinking\ water\ criteria.$

^{2 -} Criteria value may not protect key species from chronic toxicity, refer to ANZW 2018 for further guidance.

^{3 -} A Trigger value for DDT is used in the absence of a criteria value for Total OCP. DDT has the lowest criteria of OCPs.

Table 5 – Yearly Analytes Groundwater Results and Comparison Sept 2023-Sept 2024 (MWB)

Sampling Parameter	Units	Threshold Criteria (mg/L)	MWB Sept 2023	MWB Sept 2024
Total dissolved solids	mg/L	NA	10000	8700
Biochemical Oxygen Demand	mg/L	NA	<lor< th=""><th>12</th></lor<>	12
Phosphate	mg/L	0.015	0.02	0.03
Arsenic III & V	mg/L	0.024 (III), 0.013	0.001	0.001
Aluminium	mg/L	o.o55 (pH> 6.5)	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
Barium	mg/L	NA	0.41	0.35
Cadmium	mg/L	0.0002	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
Copper	mg/L	0.0014	0.009	0.007
Chromium VI	mg/L	0.004	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
Chromium (Total)	mg/L	0.004	0.005	<lor< th=""></lor<>
Cobalt	mg/L	0.09	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
Lead	mg/L	0.0034	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
Mercury	mg/L	0.0006	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
Zinc	mg/L	0.008	0.034	0.022
TRH	mg/L	0.26^{I}	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
Benzene	mg/L	0.95	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
Toluene	mg/L	0.18 ^L	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
Ethylbenzene	mg/L	0.08^{L}	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
Xylene	mg/L		<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
CVCs/VOCCs:				
- Total	mg/L	NA	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
- Tetrachlorethene (TCE)	mg/L	NA	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
- 1,1,2-Trichloroethane	mg/L	6500 (1,1,2 TCA)	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
- Tetrachloroethene (PCE)	mg/L	0.05	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
- 1,1-Dichloroethene	mg/L	0.03	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
- Vinyl Chloride	mg/L	0.0003	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
PCBs	mg/L	0.00003	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
PAHs	mg/L	0.016	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
OPPs	mg/L	0.00002	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>

Table 6 – Quarterly Groundwater Results and Comparison (MWC)

	Analytes	Units	Site Criteria (mg/L)	MWC Sept 2023	MWC Jan 2024	MWC March 2024	MWC June 2024	MWC Sept 2024
	Calcium	mg/L	NA	390	420	420	390	420
	Alkalinity (total)	mg/L	NA	880	890	840	860	910
	Chloride	mg/L	NA	5500	5300	4600	4500	4600
IONS	Fluoride	mg/L	NA	0.2	0.2	0.2	0.2	0.2
	Potassium ¹	mg/L	410	3	2	2	2	3
	Magnesium	mg/L	NA	550	600	600	510	600
	Sulphate	mg/L	NA	91	98	83	71	90
HEAVY	Iron	mg/L	0.3	<lor< th=""><th><lor< th=""><th>0.04</th><th>0.18</th><th>0.03</th></lor<></th></lor<>	<lor< th=""><th>0.04</th><th>0.18</th><th>0.03</th></lor<>	0.04	0.18	0.03
METALS	Manganese	mg/L	1.9	1.9	1.5	1.8	1.8	1.4
PHENOLS	Total phenolics	mg/L	0.32	<lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<></th></lor<>	<lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<>	<lor< th=""><th><lor< th=""><th><lor< th=""></lor<></th></lor<></th></lor<>	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
ОСР	OCP3	mg/L	0.000	<lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<></th></lor<>	<lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<>	<lor< th=""><th><lor< th=""><th><lor< th=""></lor<></th></lor<></th></lor<>	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
	pН	pН	6.5 – 8	6.9	7.0	7.4	6.9	6.8
15500	Sodium	mg/L	NA	1800	1900	2300	1700	2100
MISC. INORGANIC S	Ammonia ²	mg/L	0.9	<lor< th=""><th><lor< th=""><th>0.021</th><th><lor< th=""><th>0.02</th></lor<></th></lor<></th></lor<>	<lor< th=""><th>0.021</th><th><lor< th=""><th>0.02</th></lor<></th></lor<>	0.021	<lor< th=""><th>0.02</th></lor<>	0.02
	Nitrate	mg/L	0.7	0.068	0.03	0.03	0.02	0.2
	Total Organic C	mg/L	4	8	14	10	18	6
	EC	μS/cm	NA	15000	15000	15000	15000	15000

<LOR = No Detection. Analyte is below the Laboratory LOR

 $¹⁻World\ Health\ Organisation\ Guidelines\ for\ Drinking-water\ Quality\ 2009,\ Poor\ (acceptable)\ drinking\ water\ criteria.$

² - Criteria value may not protect key species from chronic toxicity, refer to ANZW 2018 for further guidance.

^{3 -} A Trigger value for DDT is used in the absence of a criteria value for Total OCP. DDT has the lowest criteria of OCPs.

Table 7 – Yearly Analytes Groundwater Results and Comparison Sept 2023-Sept 2024 (MWC)

		Threshold	MWC	MWC
Sampling Parameter	Units	Criteria	Sept	Sept
		(mg/L)	2023	2024
Total dissolved solids	mg/L	NA	9900	9000
Biochemical Oxygen Demand	mg/L	NA	16	10
Phosphate	mg/L	0.015	0.02	0.04
Arsenic III & V	mg/L	0.024 (III),	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
Aluminium	mg/L	o.o55 (pH> 6.5)	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
Barium	mg/L	NA	0.4	0.4
Cadmium	mg/L	0.0002	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
Copper	mg/L	0.0014	0.007	0.002
Chromium VI	mg/L	0.004	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
Chromium (total)	mg/L	0.004	<lor< th=""><th>0.004</th></lor<>	0.004
Cobalt	mg/L	0.09	0.008	0.008
Lead	mg/L	0.0034	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
Mercury	mg/L	0.0006	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
Zinc	mg/L	0.008	0.026	0.015
TRH	mg/L	0.26 ^I	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
Benzene	mg/L	0.95	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
Toluene	mg/L	0.18	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
Ethylbenzene	mg/L	0.08	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
Xylene	mg/L		<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
CVCs/VOCCs:				
- Total	mg/L	NA	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
- Tetrachlorethene	mg/L	NA	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
- 1,1,2-Trichloroethane	mg/L	6500 (1,1,2 TCA)	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
- Tetrachloroethene	mg/L	0.05	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
- 1,1-Dichloroethene	mg/L	0.03	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
- Vinyl Chloride	mg/L	0.0003	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
PCBs	mg/L	0.00003	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
PAHs	mg/L	0.016	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
OPPs				
0115	mg/L	0.00002	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>

MWD is a leachate monitoring well which provides access to the perched landfill leachate water table. The Site Criteria for this particular well is only used as a general indicator of the leachate water quality.

Table 8 - Quarterly Groundwater Results and Comparison (MWD)

	Analytes	Units	Site Criteria (mg/L)	MWD Sept 2023	MWD Jan 2024	MWD March 2024	MWD June 2024	MWD Sept 2024
	Calcium	mg/L	NA	160	160	150	170	170
	Alkalinity (total)	mg/L	NA	1900	2000	1200	1300	1700
	Chloride	mg/L	NA	3400	2200	1100	940	1600
IONS	Fluoride	mg/L	NA	0.2	0.3	0.3	0.3	0.3
	Potassium¹	mg/L	410	110	120	76	67	93
	Magnesium	mg/L	NA	280	230	130	110	190
	Sulphate	mg/L	NA	51	32	100	100	76
HEAVY	Iron	mg/L	0.3	0.88	1.1	0.4	0.28	1.0
METALS	Manganese	mg/L	1.9	0.39	0.47	0.62	0.66	0.58
PHENOLS	Total phenolics	mg/L	0.32	<lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<></th></lor<>	<lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<>	<lor< th=""><th><lor< th=""><th><lor< th=""></lor<></th></lor<></th></lor<>	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
ОСР	OCP ³	mg/L	0.00001	<lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<></th></lor<>	<lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<>	<lor< th=""><th><lor< th=""><th><lor< th=""></lor<></th></lor<></th></lor<>	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
	рН	pН	6.5 – 8	7.8	7.6	7.8	7.4	7.5
	Sodium	mg/L	NA	1500	1400	750	590	1000
MISC.	Ammonia ²	mg/L	0.9	200	190	130	100	200
INORGANICS	Nitrate	mg/L	0.7	<lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""><th>0.03</th></lor<></th></lor<></th></lor<></th></lor<>	<lor< th=""><th><lor< th=""><th><lor< th=""><th>0.03</th></lor<></th></lor<></th></lor<>	<lor< th=""><th><lor< th=""><th>0.03</th></lor<></th></lor<>	<lor< th=""><th>0.03</th></lor<>	0.03
	Total Organic C	mg/L	4	240	270	89	100	110
	EC	μS/cm	NA	3600	9700	5600	5600	8600

<LOR = No Detection. Analyte is below the Laboratory LOR

 $¹⁻World\ Health\ Organisation\ Guidelines\ for\ Drinking-water\ Quality\ 2009,\ Poor\ (acceptable)\ drinking\ water\ criteria.$

² - Criteria value may not protect key species from chronic toxicity, refer to ANZW 2018 for further guidance.

^{3 -} A Trigger value for DDT is used in the absence of a criteria value for Total OCP. DDT has the lowest criteria of OCPs.

Table 9 – Yearly Analytes Groundwater Results and Comparison Sept 2023-Sept 2024 (MWD)

		Threshold	MWD	MWD
Sampling Parameter	Units	Criteria	(leachate)	(leachate)
		(mg/L)	Sept 2023	Sept 2024
Total dissolved solids	mg/L	NA	6800	4100
Biochemical Oxygen Demand	mg/L	NA	62	68
Phosphate	mg/L	0.015	0.69	0.14
Arsenic III & V	mg/L	0.024 (III),	0.008	0.007
Aluminium	mg/L	o.o55 (pH> 6.5)	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
Barium	mg/L	NA	0.97	0.63
Cadmium	mg/L	0.0002	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
Copper	mg/L	0.0014	0.005	<lor< th=""></lor<>
Chromium VI	mg/L	0.004	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
Chromium (total)	mg/L	0.004	0.027	0.018
Cobalt	mg/L	0.09	0.021	0.01
Lead	mg/L	0.0034	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
Mercury	mg/L	0.0006	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
Zinc	mg/L	0.008	0.03	0.008
TRH	mg/L	0.26 ^I	6.1	5.6
Benzene	mg/L	0.95	0.004	0.003
Toluene	mg/L	0.18	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
Ethylbenzene	mg/L	0.08	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
Xylene	mg/L		0.003	<lor< th=""></lor<>
CVCs/VOCCs:				
- Total	mg/L	NA	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
- Tetrachlorethene (TCE)	mg/L	NA	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
- 1,1,2-Trichloroethane	mg/L	6.5	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
- Tetrachloroethene (PCE)	mg/L	0.05	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
- 1,1-Dichloroethene	mg/L	0.03	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
- Vinyl Chloride	mg/L	0.003	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
PCBs				
	mg/L	0.00003	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
PAHs	mg/L	0.016	0.007	0.056
OPPs	mg/L	0.00002	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>

Table 10 -Quarterly Groundwater Results and Comparison (MWE)

		Ilmit	Site	MWE	MWE	MWE	MWE	MWE
	Analytes	Unit s	Criteria	Sept	Jan	March	June	Sept
		5	(mg/L)	2023	2024	2024	2024	2024
	Calcium	mg/L	NA	130	110	82	39	100
	Alkalinity	mg/L	NA	1100	1100	1400	980	1100
	Chloride	mg/L	NA	1300	1300	440	240	780
IONS	Fluoride	mg/L	NA	0.4	0.4	0.5	0.4	0.4
	Potassium ¹	mg/L	410	1	0.9	<lor< th=""><th>0.8</th><th>2</th></lor<>	0.8	2
	Magnesium	mg/L	NA	140	130	91	46	100
	Sulphate	mg/L	NA	240	210	120	60	180
HEAVY METALS	Iron	mg/L	0.3	0.02	<lor< th=""><th>0.010</th><th>0.09</th><th>1.4</th></lor<>	0.010	0.09	1.4
HEAVI METALS	Manganese	mg/L	1.9	1.1	0.9	0.65	0.71	1
PHENOLS	Total phenolics	mg/L	0.32	<lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<></th></lor<>	<lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<>	<lor< th=""><th><lor< th=""><th><lor< th=""></lor<></th></lor<></th></lor<>	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
ОСР	OCP ³	mg/L	0.00001	<lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<></th></lor<>	<lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<>	<lor< th=""><th><lor< th=""><th><lor< th=""></lor<></th></lor<></th></lor<>	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
	рН	pН	6.5 – 8	7.4	7.3	7.7	7.1	7.2
	Sodium	mg/L	NA	760	830	720	440	590
MISC.	Ammonia ²	mg/L	0.9	0.12	0.015	<lor< th=""><th>0.081</th><th>0.093</th></lor<>	0.081	0.093
INORGANICS	Nitrate	mg/L	0.7	0.01	<lor< th=""><th><lor< th=""><th>0.008</th><th>0.066</th></lor<></th></lor<>	<lor< th=""><th>0.008</th><th>0.066</th></lor<>	0.008	0.066
	Total Organic C	mg/L	4	5	19	9	44	7
	EC	μS/c	NA	5500	5800	3700	2400	4400

<LOR = No Detection. Analyte is below the Laboratory LOR

 $¹⁻World\ Health\ Organisation\ Guidelines\ for\ Drinking-water\ Quality\ 2009,\ Poor\ (acceptable)\ drinking\ water\ criteria.$

^{2 -} Criteria value may not protect key species from chronic toxicity, refer to ANZW 2018 for further guidance.

³ - A Trigger value for DDT is used in the absence of a criteria value for Total OCP. DDT has the lowest criteria of OCPs

Table 11 – Yearly Analytes Groundwater Results and Comparison Sept 2023-Sept 2024 (MWE)

Sampling Parameter	Units	Threshold Criteria (mg/L)	MWE Sept 2023	MWE Sept 2024
Total dissolved solids	mg/L	NA	3200	2700
Biochemical Oxygen Demand	mg/L	NA	11	11
Phosphate	mg/L	0.015	0.05	0.01
Arsenic III & V	mg/L	0.024 (III), 0.013	0.008	0.005
Aluminium	mg/L	o.o55 (pH> 6.5)	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
Barium	mg/L	NA	0.094	0.086
Cadmium	mg/L	0.0002	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
Copper	mg/L	0.0014	0.004	<lor< th=""></lor<>
Chromium VI	mg/L	0.004	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
Chromium (total)	mg/L	0.004	<lor< th=""><th>0.004</th></lor<>	0.004
Cobalt	mg/L	0.09	0.006	0.007
Lead	mg/L	0.0034	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
Mercury	mg/L	0.0006	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
Zine	mg/L	0.008	0.011	0.006
TRH	mg/L	0.26 ^I	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
Benzene	mg/L	0.95	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
Toluene	mg/L	0.18	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
Ethylbenzene	mg/L	0.08	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
Xylene			<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
CVCs/VOCCs:				
- Total	mg/L	NA	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
- Tetrachlorethene (TCE)	mg/L	NA	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
- 1,1,2-Trichloroethane	mg/L	6.5	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
- Tetrachloroethene (PCE)	mg/L	0.05	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
- 1,1-Dichloroethene	mg/L	0.03	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
- Vinyl Chloride		0.0003	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
PCBs	mg/L	0.00003	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
PAHs	mg/L	0.016	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
OPPs	mg/L	0.00002	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>

5.0 DISCUSSION

The inferred hydraulic gradient for the site is a down gradient towards Parsons Gully to the west. The location of the four wells surrounding the landfill place wells MWA, MWB and MWC down-hydraulic gradient and well MWE up-hydraulic gradient of the landfill. Well MWD is located within the perched landfill water table, this enables access to the leachate within the landfill.

The following is a summary of the significant results for September 2024 in relation to the Site Criteria. Key increasing trends, decreasing trends and exceedances of the threshold criteria are indicated.

MWA

MWA is located in the northwest section of the site and is considered to be a down-hydraulic gradient monitoring well. There is farmland adjoining to the north and west of this location. The following changes have occurred in the water quality of MWA:

- Phosphate has decreased from 0.076mg/L in September 2023 to 0.073mg/L in September 20243, above the criteria of 0.015mgL.
- Iron has increased from below limit of reporting in June 2024 to 0.03mg/L in September 2024, below the criteria of 0.3mg/L.
- Copper has remained constant between the September 2023 and September 2024 monitoring periods at 0.01mg/L in, above the criteria of 0.0014mg/L.
- Zinc has increased from 0.025mg/L in September 2023 to 0.029 mg/L in September 2024, above the site criteria of 0.008mg/.
- Total Organic Carbon has fluctuated over the monitoring period with 5mg/L recorded in September 2023 and March 2024 and 9mg/L January 2024 above the site criteria of 4mg/L. June and September 2024 recorded 4mg/L equal to the site criteria of 4mg/L.
- pH results during the September 2023 and September 2024 monitoring periods have remained between pH6.9-7.3.
- Manganese has increased from 0.028mg/L in June to 0.045mg/L in September 2024.
- Sodium has increased from 1800mg/L in June 2024 to 2100mg/L in September 2024.
- Mercury has decreased from 0.0006mg/L in September 2023 to below limit of reporting in September 2024.
- Alkalinity has increased from 490mg/L in June 2023 to 550mg/L in September 2024.

 Chloride has decreased from 7300mg/L in June 2024 to 6500mg/L in September 2024.

All other analytes reported concentrations consistent with previous monitoring data.

MWB

MWB is located in the southwest section of the site and is considered to be a down-hydraulic gradient monitoring well. There is farmland to the south and west of this location. The well has remained relatively stable.

- Total Organic Carbon has decreased over the monitoring period with 9mg/L recorded in September 2023, 14mg/L in January 2024 and 7mg/L recorded in March, June and September 2024 all above the site criteria of 4mg/L.
- The concentration of Ammonia has increased from below the limit of reporting in June to 0.034 mg/ in September 2024.
- Phosphate has increased between September 2023 and September 2024 with a concentration of 0.02mg/L and 0.03mg/L above the site criteria of 0.015mg/L.
- Zinc concentration decreased from 0.034mg/L in September 2023 to 0.022mg/L in September 2024, above site criteria of 0.008mg/L.
- Total Chromium has decreased from 0.005mg/L in September 2023 to below the limit of reporting in September 2024.
- Copper concentration has decreased from 0.009 mg/L in September 2023 to 0.007 mg/L in September 2024 above the criteria of 0.0014.
- Iron concentrations has increased from below the limit of reporting in June 2024 to 0.03 mg/L in September 2024.
- Biochemical Oxygen demand has increased from below the limit of reporting in September 2023 to 12 mg/L in September 2024.
- Chromium has decreased from 0.005 mg/L in September 2023 above the criteria of 0.004 mg/L to below the limit of reporting in September 2024.

All other analytes reported concentrations consistent with previous monitoring data.

MWC

MWC is located on the southern boundary of the site, down hydraulic gradient of the landfill and onsite dam. There is farmland to the south of well, along with a stand of vegetation immediately south of the well. This well has shown increasing turbidity with sedimentation in observations from the field.

There were 4 concentrations which exceeded the site criteria. The following changes have occurred in the water quality of MWC:

- Manganese concentration has decreased from 1.8mg/L in June to 1.4mg/L in September 2024.
- Total Organic Carbon has fluctuated over the monitoring period with 8mg/L recorded in September 2023, 14mg/L in January 2024, 10mg/L recorded in March, 18mg/L in June and 6mg/L recorded in September 2024 all above the site criteria of 4mg/L.
- Phosphate concentration has increased between September 2023 and September 2024 with a concentration of 0.02mg/L and 0.04mg/L above the site criteria of 0.015mg/L.
- Calcium concentration increased from 390mg/L in June 2024 to 420mg/L in September 2024.
- Chloride concentration increased from 4500mg/L in June to 4600mg/L in September 2024.
- Magnesium concentration increased from 510mg/L in June to 600mg/L in September 2024.
- Zinc concentration decreased from 0.026mg/L in September 2023 to 0.015mg/L in September 2024 above the site criteria of 0.008mg/L.
- Nitrate concentrations have increased from 0.02mg/L in June to 0.2mg/L in September 2024.
- BOD has decreased from 16mg/L in September 2023 to 10mg/L in September 2024.
- Copper concentrations have decreased from 0.007 mg/L in September 2023 to 0.002 mg/L in September 2024.

All other analytes reported concentrations consistent with previous monitoring data.

MWD

The water collected and analysed from well MWD is landfill leachate and as such the Site Criteria is not used to compare the results against. The results of MWD are used as an indicator of current conditions within the landfill with trends and seasonal variations apparent. MWD is also to be used as a comparison to the external monitoring wells.

The following changes occurred in the water quality of the landfill leachate well MWD:

- The concentration of Ammonia has increased from 100mg/L in June to 200 mg/ in September 2024.
- Iron concentration has increased from 0.28mg/L in June 2024 to 1mg/L in September 2024, above the criteria of 0.3mg/L.

- Phosphate concentration has decreased from 0.69mg/L in September 2023 to 0.14mg/L, in September 2024.
- Zinc concentration has decreased from 0.03 mg/L in September 2023 to 0.008 mg/L in September 2024 equal to the site criteria of 0.008mg/L.
- Total dissolved solids have decreased from 6800mg/L in September 2023 to 4100mg/L in September 2024.
- Copper concentration has decreased from 0.005mg/L September 2023 to below the limit of reporting in September 2024.
- Chloride concentration has increased from 940mg/L in June to 1600mg/L in September 2024.
- Potassium concentration has increased from 67mg/L in June to 93mg/L in September 2024.
- Magnesium concentration has increased from 110mg/L in June to 190mg/L in September 2024.
- Sulphate concentration has decreased from 100mg/L in June to 76mg/L in September 2024.
- Sodium concentration has increased from 590mg/L in June to 1000mg/L in September 2024.
- Nitrate concentration has increased from below the limit of reporting in June to 0.03mg/L in September 2024.
- Electrical Conductivity has increased from 5600 $\mu S/cm$ in June to 8600 $\mu S/cm$ in September 2024.
- Polycyclic Aromatic Hydrocarbons (PAH) concentration has increased from 0.007mg/L in September 2023 to 0.056mg/L in September 2024 above the site criteria.
- Naphthalene concentration has decreased from 0.009 mg/L in September 2023 to 0.004mg/L in September 2024.
- Chlorobenzene concentration has decreased from 0.02 mg/L in September 2023 to 0.009mg/L in September 2024.
- TRH C10-40 concentration has decreased from 6.1 mg/L in September 2023 to 2.6mg/L in September 2024.

MWE

MWE is located on the eastern boundary of the site and is an up-gradient groundwater monitoring well. There are a series of dams to the east of the well. The following changes have occurred in the water quality of MWE:

- Total Organic Carbon has fluctuated over the monitoring period with 5mg/L recorded in September 2023, 19mg/L in January 2024, 9mg/L recorded in March, 44mg/L in June and 7mg/L recorded in September 2024 all above the site criteria of 4mg/L.
- Zinc concentration has decreased from 0.011 mg/L in September 2023 to 0.006 mg/L in September 2024 equal to the site criteria of 0.008mg/L.
- Sulphate concentration decreased from 0.05mg/L in September 2023 to 0.01mg/L in September 2024 below the site criteria of 0.015 mg/L.
- Copper concentration decreased from 0.004mg/L in September 2023 to below the limit of reporting in September 2024.
- Chromium concentration increased from below the limit of reporting in September 2023 to 0.004mg/L in September 2024.
- Phosphate concentration decreased from 6omg/L in June to 18omg/L in September 2024.
- Magnesium concentration increased from 46mg/L in June to 100mg/L in September 2024.
- Chloride concentration have increased from 240mg/L in June to 780mg/L in September 2024.
- Calcium concentration increased from 39mg/L in June to 100mg/L in September 2024.
- Potassium concentration increased from o.8mg/L in June to 2mg/L in September 2024.
- Iron concentration increased from 0.09mg/L in June to 1.4mg/L in September 2024 above the site criteria of 0.3mg/L.
- Sodium concentration increased from 440mg/L in June to 590mg/L in September 2024.
- Nitrate concentration increased from 0.008mg/L in June to 0.066mg/L in September 2024.

All other analytes reported concentrations consistent with previous monitoring data.

The following analytes exceeded the Threshold Criteria during the September 2024 sampling event, excluding the Leachate Monitoring well (MWD):

- Copper, Phosphate and Zinc in MWA, MWB and MWC;
- Total Organic Carbon in MWB and MWC; and
- Iron and Total Organic Carbon in MWE.

Refer to **Attachment 1** – Data Log.

Site and Maintenance

The weather conditions and surrounding land uses are likely impacting the local groundwater conditions.

6.0 CONCLUSIONS

There are seasonal fluctuations observed with regional groundwater conditions. The recent weather conditions of increased rainfall throughout 2023-2024 compared to previous years may have influenced the groundwater conditions. Trending of these analytes over time may indicate a seasonal fluctuation, an anomaly or highlight an issue on the site (or surrounding area). The trending of analytes occurs in the annual groundwater monitoring report with a running comparison in the quarterly monitoring reports.

The results and discussion of the laboratory sample analysis from the Scone Waste Facility during the September 2024 sampling event displayed several ongoing exceedances of the Site Criteria. The MWE is considered an upgradient monitoring well and is an indicator of surrounding groundwater conditions.

The following analytes exceeded the Threshold Criteria during the September 2024 sampling event, excluding the Leachate Monitoring well (MWD);

- Copper, Phosphate and Zinc in MWA, MWB and MWC;
- Total Organic Carbon in MWB, MWC and MWE; and
- Iron in MWE.

Continued sampling and data collection will allow robust trending and statistical analysis of data to occur.

The next water sampling event will be a quarterly monitoring event which will be undertaken in December 2024.

REFERENCES

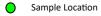

- Australian and New Zealand Guidelines for the Management of Contaminated Sites (ANZECC/NHMRC 1992);
- Australia and New Zealand Guidelines for Fresh and Marine Water Quality (ANZW, 2018);
- Australian Drinking Water Guidelines, National Water Quality Management Strategy 2011;
- Contaminated Land Management Act 1997 (NSW);
- Contaminated Sites: Guidelines for Consultants Reporting on Contaminated Sites (NSW EPA 2011);
- Contaminated Sites: Guidelines on Duty to Report Contamination under the Contamination
 Land Management Act 1997 (NSW DECC, 2009);
- Contaminated Sites: Guidelines for the Assessment and Management of Groundwater
 Contamination (NSW DEC, 2007);
- Contaminated Sites: Guidelines on Significant Risk of Harm from Contaminated Land and the Duty to Report (NSW EPA 1999);
- Contaminated Sites: Sampling Design Guidelines (NSW EPA 1995);
- Environmental Guidelines: Solid Waste Landfills (NSW EPA, 1996);
- Environmental Guidelines Solid Waste Landfills Second edition, (NSW EPA 2016);
- Health Based Soil Investigation Levels, Imray, P & Langley, A, National Environmental Health Forum Monographs, Soil Series No. 2 (2nd Ed), South Australian Health Commission (NEHF 1998);
- National Environment Protection (Assessment of Site Contamination) Measure (No.1)
 (NEPM, 2013) as amended;
- Storage and Handling of Dangerous Goods Code of Practice 2005;
- Work Health and Safety Act 2011 (NSW) and associated regulations.

FIGURE 1

Site boundary

Image: SiX Maps NSW Gov.

ENGAGE Environmental Services Pty Limited 113 Reservoir Rd Glendale NSW 2285 0478 362005

Sampling Locations	Noblet	Road, Scon	ie	
Client	Project No.	Figure No	Date	
UHSC	E2424	1	1/02/2024	١
	Scale	Compiled	Revision	٦
idmin@engage-es.com.au	NA	DB	1	

Attachment 1 Data log

			Threshold Criteria Units	NA mg/L	NA mg/L	NA mg/L	NA mg/L	0.3 mg/L	NA mg/L	mg/L	0.00001 mg/L	NA mg/L	6.5–8 pH	NA mg/L	0.9 mg/L
ENV	ENGAG IRONME SERVICE	NTAL	Analytes	Calcium	Alkalinity	Chloride	Fluoride	Iron	Magnesium (Manganese	Organochlori ne pesticides ((OCP)	Potassium (Hd.	Sodium	Ammonia
			Monitorin g frequency	Quarterl y	Quarterl y	Quarterl y	Quarterl y	Quarterl y							
MWA	362034	16/09/2024	Annual	570	550	6500	0.1	0.03	1100	0.045	<0.0002	4	7	2100	0.051
MWB	362034	16/09/2024	Annual	480	490	4200	0.3	0.03	640	0.007	<0.0002	4	7	1500	0.034
MWC	362034	16/09/2024	Annual	420	910	4600	0.2	0.03	600	1.4	<0.0002	3	6.8	2100	0.02
MWD	362034	16/09/2024	Annual	170	1700	1600	0.3	1	190	0.58	<0.0002	93	7.5	1000	200
MWE	362034	16/09/2024	Annual	100	1100	780	0.4	1.4	100	1	<0.0002	2	7.2	590	0.093

0.7	NA	4	0.32	NA	NA	NA	0.015	0.024 (III) 0.013 (V)	0.055 (pH> 6.5)	NA	0.0002	0.09	0.0014	0.001	NA
mg/L	mg/L	mg/L	mg/L	μS/cm	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Nitrate	Sulfate	Total organic carbon	Total phenolics	Electrical conductivity (EC)	Total dissolved solids	Biochemical oxygen demand	Phosphate	Arsenic III & V	Aluminium	Barium	Cadmium	Cobalt	Copper	Chromium VI	Chromium (total)
Quarterl y	Quarterl y	Quarterl y	Quarterl y	Quarterl y	Yearly	Yearly	Yearly	Yearly	Yearly	Yearly	Yearly	Yearly	Yearly	Yearly	Yearly
0.55	63	4	<0.05	20000	13000	<10	0.073	0.001	<0.01	0.57	<0.0001	<0.001	0.01	<0.005	0.005
0.24	97	7	<0.05	14000	8700	12	0.03	0.001	<0.01	0.35	<0.0001	<0.001	0.007	<0.005	0.01
0.2	90	6	<0.05	15000	9000	10	0.04	<0.01	<0.01	0.4	<0.0001	0.008	0.002	<0.005	0.004
0.03	76	110	<0.05	8600	4100	68	0.14	0.007	<0.01	0.63	<0.0001	0.01	<0.001	<0.005	0.018
0.066	180	7	<0.05	4400	2700	11	0.01	0.005	<0.01	0.086	<0.0001	0.007	<0.001	<0.005	0.004

0.0034	0.0006	0.008	0.016	0.26	0.95	0.18	0.08	0.35	NA	6500	0.05	0.03	0.0003	0.00003	0.00002
mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Lead	Mercury	Zinc	PAHS	TRH	Benzene	Toluene	Ethylbenzene	total xylene	Tetrachloret hene (TCE)	1,1,1- Trichloroetha ne (TCA)	Tetrachloroe thene (PCE)	1,2- Dichloroethe ne	Vinyl Chloride	PCBs	OPPs
Yearly	Yearly	Yearly	Yearly	Yearly	Yearly	Yearly	Yearly	Yearly	Yearly	Yearly	Yearly	Yearly	Yearly	Yearly	Yearly
<0.001	<0.00005	0.029	ND	<0.01	<0.001	<0.001	<0.001	<0.002	<0.001	<0.001	<0.001	<0.001	<0.01	<0.002	<0.0002
<0.001	<0.00005	0.022	ND	<0.01	<0.001	<0.001	<0.001	<0.002	<0.001	<0.001	<0.001	<0.001	<0.01	<0.002	<0.0002
<0.001	<0.00005	0.015	ND	<0.01	<0.001	<0.001	<0.001	<0.002	<0.001	<0.001	<0.001	<0.001	<0.01	<0.002	<0.0002
<0.001	<0.00005	0.008	0.0056	2.6	0.003	<0.001	<0.001	<0.002	<0.001	<0.001	<0.001	<0.001	<0.01	<0.002	<0.0002
<0.001	<0.00005	0.006	ND	<0.01	<0.001	<0.001	<0.001	<0.002	<0.001	<0.001	<0.001	<0.001	<0.01	<0.002	<0.0002

1 1			

Attachment 2 NATA Accredited Laboratory Results

Envirolab Services Pty Ltd

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 362034

Client Details	
Client	Engage Environmental Services
Attention	Stephen Challinor
Address	113 Reservoir Rd, GLENDALE, NSW, 2285

Sample Details	
Your Reference	E2424-0924 - UHSC
Number of Samples	5 Water
Date samples received	18/09/2024
Date completed instructions received	18/09/2024

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details					
Date results requested by	25/09/2024				
Date of Issue	25/09/2024				
NATA Accreditation Number 2901. This document shall not be reproduced except in full.					
Accredited for compliance with ISO/I	EC 17025 - Testing. Tests not covered by NATA are denoted with *				

Results Approved By

Diego Bigolin, Inorganics Supervisor Dragana Tomas, Senior Chemist Jack Wallis, Senior Chemist Steven Luong, Senior Chemist Tabitha Roberts, Senior Chemist **Authorised By**

Nancy Zhang, Laboratory Manager

Envirolab Reference: 362034 Revision No: R00

VHC's in water						
Our Reference		362034-1	362034-2	362034-3	362034-4	362034-5
Your Reference	UNITS	MWA	MWB	MWC	MWD	MWE
Date Sampled		16/09/2024	16/09/2024	16/09/2024	16/09/2024	16/09/2024
Type of sample		Water	Water	Water	Water	Water
Date Extracted	-	20/09/2024	20/09/2024	20/09/2024	20/09/2024	20/09/2024
Date Analysed	-	23/09/2024	23/09/2024	23/09/2024	23/09/2024	23/09/2024
Dichlorodifluoromethane	μg/L	<10	<10	<10	<10	<10
Chloromethane	μg/L	<10	<10	<10	<10	<10
Vinyl Chloride	μg/L	<10	<10	<10	<10	<10
Bromomethane	μg/L	<10	<10	<10	<10	<10
Chloroethane	μg/L	<10	<10	<10	<10	<10
Trichlorofluoromethane	μg/L	<10	<10	<10	<10	<10
1,1-Dichloroethene	μg/L	<1	<1	<1	<1	<1
Trans-1,2-dichloroethene	μg/L	<1	<1	<1	<1	<1
1,1-dichloroethane	μg/L	<1	<1	<1	<1	<1
Cis-1,2-dichloroethene	μg/L	<1	<1	<1	<1	<1
Bromochloromethane	μg/L	<1	<1	<1	<1	<1
Chloroform	μg/L	<1	<1	<1	<1	<1
2,2-dichloropropane	μg/L	<1	<1	<1	<1	<1
1,2-dichloroethane	μg/L	<1	<1	<1	<1	<1
1,1,1-trichloroethane	μg/L	<1	<1	<1	<1	<1
1,1-dichloropropene	μg/L	<1	<1	<1	<1	<1
Carbon tetrachloride	μg/L	<1	<1	<1	<1	<1
Dibromomethane	μg/L	<1	<1	<1	<1	<1
1,2-dichloropropane	μg/L	<1	<1	<1	<1	<1
Trichloroethene	μg/L	<1	<1	<1	<1	<1
Bromodichloromethane	μg/L	<1	<1	<1	<1	<1
trans-1,3-dichloropropene	μg/L	<1	<1	<1	<1	<1
cis-1,3-dichloropropene	μg/L	<1	<1	<1	<1	<1
1,1,2-trichloroethane	μg/L	<1	<1	<1	<1	<1
1,3-dichloropropane	μg/L	<1	<1	<1	<1	<1
Dibromochloromethane	μg/L	<1	<1	<1	<1	<1
1,2-dibromoethane	μg/L	<1	<1	<1	<1	<1
Tetrachloroethene	μg/L	<1	<1	<1	<1	<1
1,1,1,2-tetrachloroethane	μg/L	<1	<1	<1	<1	<1
Chlorobenzene	μg/L	<1	<1	<1	9	<1
Bromoform	μg/L	<1	<1	<1	<1	<1
1,1,2,2-tetrachloroethane	μg/L	<1	<1	<1	<1	<1
1,2,3-trichloropropane	μg/L	<1	<1	<1	<1	<1
Bromobenzene	μg/L	<1	<1	<1	<1	<1

VHC's in water						
Our Reference		362034-1	362034-2	362034-3	362034-4	362034-5
Your Reference	UNITS	MWA	MWB	MWC	MWD	MWE
Date Sampled		16/09/2024	16/09/2024	16/09/2024	16/09/2024	16/09/2024
Type of sample		Water	Water	Water	Water	Water
2-chlorotoluene	μg/L	<1	<1	<1	<1	<1
4-chlorotoluene	μg/L	<1	<1	<1	<1	<1
1,3-dichlorobenzene	μg/L	<1	<1	<1	<1	<1
1,4-dichlorobenzene	μg/L	<1	<1	<1	5	<1
1,2-dichlorobenzene	μg/L	<1	<1	<1	<1	<1
1,2-dibromo-3-chloropropane	μg/L	<1	<1	<1	<1	<1
1,2,4-trichlorobenzene	μg/L	<1	<1	<1	<1	<1
Hexachlorobutadiene	μg/L	<1	<1	<1	<1	<1
1,2,3-trichlorobenzene	μg/L	<1	<1	<1	<1	<1
Surrogate Dibromofluoromethane	%	100	101	101	100	101
Surrogate Toluene-d8	%	94	98	96	100	97
Surrogate 4-Bromofluorobenzene	%	82	81	84	88	92

vTRH(C6-C10)/BTEXN in Water						
Our Reference		362034-1	362034-2	362034-3	362034-4	362034-5
Your Reference	UNITS	MWA	MWB	MWC	MWD	MWE
Date Sampled		16/09/2024	16/09/2024	16/09/2024	16/09/2024	16/09/2024
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	20/09/2024	20/09/2024	20/09/2024	20/09/2024	20/09/2024
Date analysed	-	23/09/2024	23/09/2024	23/09/2024	23/09/2024	23/09/2024
TRH C ₆ - C ₉	μg/L	<10	<10	<10	26	<10
TRH C ₆ - C ₁₀	μg/L	<10	<10	<10	28	<10
TRH C ₆ - C ₁₀ less BTEX (F1)	μg/L	<10	<10	<10	25	<10
Benzene	μg/L	<1	<1	<1	3	<1
Toluene	μg/L	<1	<1	<1	<1	<1
Ethylbenzene	μg/L	<1	<1	<1	<1	<1
m+p-xylene	μg/L	<2	<2	<2	<2	<2
o-xylene	μg/L	<1	<1	<1	<1	<1
Naphthalene	μg/L	<1	<1	<1	4	<1
Surrogate Dibromofluoromethane	%	100	101	101	100	101
Surrogate Toluene-d8	%	94	98	96	100	97
Surrogate 4-Bromofluorobenzene	%	82	81	84	88	92

svTRH (C10-C40) in Water						
Our Reference		362034-1	362034-2	362034-3	362034-4	362034-5
Your Reference	UNITS	MWA	MWB	MWC	MWD	MWE
Date Sampled		16/09/2024	16/09/2024	16/09/2024	16/09/2024	16/09/2024
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	23/09/2024	23/09/2024	23/09/2024	23/09/2024	23/09/2024
Date analysed	-	23/09/2024	24/09/2024	24/09/2024	24/09/2024	24/09/2024
TRH C ₁₀ - C ₁₄	μg/L	<50	<50	<50	560	<50
TRH C ₁₅ - C ₂₈	μg/L	<100	<100	<100	1,900	<100
TRH C ₂₉ - C ₃₆	μg/L	<100	<100	<100	140	<100
Total +ve TRH (C10-C36)	μg/L	<50	<50	<50	2,600	<50
TRH >C ₁₀ - C ₁₆	μg/L	<50	<50	<50	770	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	μg/L	<50	<50	<50	760	<50
TRH >C ₁₆ - C ₃₄	μg/L	<100	<100	<100	1,800	<100
TRH >C ₃₄ - C ₄₀	μg/L	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	μg/L	<50	<50	<50	2,600	<50
Surrogate o-Terphenyl	%	88	99	86	106	88

PAHs in Water						
Our Reference		362034-1	362034-2	362034-3	362034-4	362034-5
Your Reference	UNITS	MWA	MWB	MWC	MWD	MWE
Date Sampled		16/09/2024	16/09/2024	16/09/2024	16/09/2024	16/09/2024
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	23/09/2024	23/09/2024	23/09/2024	24/09/2024	23/09/2024
Date analysed	-	23/09/2024	23/09/2024	23/09/2024	24/09/2024	23/09/2024
Naphthalene	μg/L	<0.1	<0.1	<0.1	5.6	<0.1
Acenaphthylene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-c,d)pyrene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene TEQ	μg/L	<0.5	<0.5	<0.5	<0.5	<0.5
Total +ve PAH's	μg/L	<0.1	<0.1	<0.1	5.6	<0.1
Surrogate p-Terphenyl-d14	%	64	72	68	82	74

Organochlorine Pesticides in Water						
Our Reference		362034-1	362034-2	362034-3	362034-4	362034-5
Your Reference	UNITS	MWA	MWB	MWC	MWD	MWE
Date Sampled		16/09/2024	16/09/2024	16/09/2024	16/09/2024	16/09/2024
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	23/09/2024	23/09/2024	23/09/2024	24/09/2024	23/09/2024
Date analysed	-	23/09/2024	23/09/2024	23/09/2024	24/09/2024	23/09/2024
alpha-BHC	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
НСВ	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
beta-BHC	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
gamma-BHC	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Heptachlor	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
delta-BHC	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Aldrin	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Heptachlor Epoxide	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
gamma-Chlordane	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
alpha-Chlordane	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Endosulfan I	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
pp-DDE	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Dieldrin	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Endrin	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Endosulfan II	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
pp-DDD	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Endrin Aldehyde	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
pp-DDT	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Endosulfan Sulphate	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Methoxychlor	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Surrogate 4-Chloro-3-NBTF	%	72	74	63	94	69

OP Pesticides in Water						
Our Reference		362034-1	362034-2	362034-3	362034-4	362034-5
Your Reference	UNITS	MWA	MWB	MWC	MWD	MWE
Date Sampled		16/09/2024	16/09/2024	16/09/2024	16/09/2024	16/09/2024
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	23/09/2024	23/09/2024	23/09/2024	24/09/2024	23/09/2024
Date analysed	-	23/09/2024	23/09/2024	23/09/2024	24/09/2024	23/09/2024
Dichlorvos	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Mevinphos	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Phorate	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Dimethoate	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Diazinon	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Disulfoton	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Chlorpyriphos-methyl	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Parathion-Methyl	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Ronnel	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Fenitrothion	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Malathion	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Chlorpyriphos	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Fenthion	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Parathion	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Bromophos ethyl	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Methidathion	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Fenamiphos	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Ethion	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Phosalone	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Azinphos-methyl (Guthion)	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Coumaphos	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Surrogate 4-Chloro-3-NBTF	%	68	72	63	94	68

PCBs in Water						
Our Reference		362034-1	362034-2	362034-3	362034-4	362034-5
Your Reference	UNITS	MWA	MWB	MWC	MWD	MWE
Date Sampled		16/09/2024	16/09/2024	16/09/2024	16/09/2024	16/09/2024
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	23/09/2024	23/09/2024	23/09/2024	24/09/2024	23/09/2024
Date analysed	-	23/09/2024	23/09/2024	23/09/2024	24/09/2024	23/09/2024
Aroclor 1016	μg/L	<2	<2	<2	<2	<2
Aroclor 1221	μg/L	<2	<2	<2	<2	<2
Aroclor 1232	μg/L	<2	<2	<2	<2	<2
Aroclor 1242	μg/L	<2	<2	<2	<2	<2
Aroclor 1248	μg/L	<2	<2	<2	<2	<2
Aroclor 1254	μg/L	<2	<2	<2	<2	<2
Aroclor 1260	μg/L	<2	<2	<2	<2	<2
Surrogate 2-Fluorobiphenyl	%	75	77	67	76	76

Total Phenolics in Water						
Our Reference		362034-1	362034-2	362034-3	362034-4	362034-5
Your Reference	UNITS	MWA	MWB	MWC	MWD	MWE
Date Sampled		16/09/2024	16/09/2024	16/09/2024	16/09/2024	16/09/2024
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	19/09/2024	19/09/2024	19/09/2024	19/09/2024	19/09/2024
Date analysed	-	19/09/2024	19/09/2024	19/09/2024	19/09/2024	19/09/2024
Total Phenolics (as Phenol)	mg/L	0.1	<0.05	<0.05	<0.05	<0.05

All metals in water-dissolved						
Our Reference		362034-1	362034-2	362034-3	362034-4	362034-5
Your Reference	UNITS	MWA	MWB	MWC	MWD	MWE
Date Sampled		16/09/2024	16/09/2024	16/09/2024	16/09/2024	16/09/2024
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	19/09/2024	19/09/2024	19/09/2024	19/09/2024	19/09/2024
Date analysed	-	19/09/2024	19/09/2024	19/09/2024	19/09/2024	19/09/2024
Aluminium-Dissolved	μg/L	<10	<10	<10	<10	<10
Arsenic-Dissolved	μg/L	1	1	<1	7	5
Barium-Dissolved	μg/L	570	350	400	630	86
Cadmium-Dissolved	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Cobalt-Dissolved	μg/L	<1	<1	8	10	7
Chromium-Dissolved	μg/L	5	10	4	18	4
Copper-Dissolved	μg/L	10	7	2	<1	<1
Lead-Dissolved	μg/L	<1	<1	<1	<1	<1
Mercury-Dissolved	μg/L	<0.05	<0.05	<0.05	<0.05	<0.05
Zinc-Dissolved	μg/L	29	22	15	8	6
Iron-Dissolved	μg/L	30	30	30	1,000	1,400
Manganese-Dissolved	μg/L	45	7	1,400	580	1,000

Ion Balance						
Our Reference		362034-1	362034-2	362034-3	362034-4	362034-5
Your Reference	UNITS	MWA	MWB	MWC	MWD	MWE
Date Sampled		16/09/2024	16/09/2024	16/09/2024	16/09/2024	16/09/2024
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	18/09/2024	18/09/2024	18/09/2024	18/09/2024	18/09/2024
Date analysed	-	18/09/2024	18/09/2024	18/09/2024	18/09/2024	18/09/2024
Calcium - Dissolved	mg/L	570	480	420	170	100
Potassium - Dissolved	mg/L	4	4	3	93	2
Sodium - Dissolved	mg/L	2,100	1,500	2,100	1,000	590
Magnesium - Dissolved	mg/L	1,100	640	600	190	100
Hardness (calc) equivalent CaCO ₃	mg/L	5,900	3,800	3,500	1,200	680
Hydroxide Alkalinity (OH⁻) as CaCO₃	mg/L	<5	<5	<5	<5	<5
Bicarbonate Alkalinity as CaCO ₃	mg/L	550	490	910	1,700	1,100
Carbonate Alkalinity as CaCO ₃	mg/L	<5	<5	<5	<5	<5
Total Alkalinity as CaCO₃	mg/L	550	490	910	1,700	1,100
Sulphate, SO4	mg/L	63	97	90	76	180
Chloride, Cl	mg/L	6,500	4,200	4,600	1,600	780
Ionic Balance	%	3.0	4.0	4.0	-5.0	-9.0

Miscellaneous Inorganics						
Our Reference		362034-1	362034-2	362034-3	362034-4	362034-5
Your Reference	UNITS	MWA	MWB	MWC	MWD	MWE
Date Sampled		16/09/2024	16/09/2024	16/09/2024	16/09/2024	16/09/2024
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	18/09/2024	18/09/2024	18/09/2024	18/09/2024	18/09/2024
Date analysed	-	18/09/2024	18/09/2024	18/09/2024	18/09/2024	18/09/2024
Hexavalent Chromium, Cr ⁶⁺ Low Level	mg/L	<0.001	0.005	<0.001	<0.001	<0.001
Ammonia as N in water	mg/L	0.051	0.034	0.020	200	0.093
BOD	mg/L	<10	12	10	68	11
Fluoride, F	mg/L	0.1	0.3	0.2	0.3	0.4
Total Organic Carbon	mg/L	4	7	6	110	7
Total Dissolved Solids (grav)	mg/L	13,000	8,700	9,000	4,100	2,700
Phosphate as P in water	mg/L	0.073	0.03	0.04	0.14	0.01
Nitrate as N in water	mg/L	0.55	0.24	0.20	0.03	0.066
Electrical Conductivity	μS/cm	20,000	14,000	15,000	8,600	4,400
рН	pH Units	7.0	7.0	6.8	7.5	7.2

Method ID	Methodology Summary
Inorg-001	pH - Measured using pH meter and electrode. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-002	Conductivity and Salinity - measured using a conductivity cell.
Inorg-006	Alkalinity - determined titrimetrically in accordance with APHA latest edition, 2320-B.
Inorg-018	Total Dissolved Solids - determined gravimetrically. The solids are dried at 180+/-10°C.
	NOTE: Where the EC of the sample is <100µS/cm, the TDS will typically be below 70mg/L (as the sample is very likely to be at least drinking water quality). Therefore to ensure data quality for TDS, the TDS is typically calculated as per the equation below:-
	TDS = EC * 0.6
Inorg-026	Fluoride determined by ion selective electrode (ISE) in accordance with APHA latest edition, 4500-F-C.
Inorg-031	Total Phenolics by segmented flow analyser (in line distillation with colourimetric finish). Solids are extracted in a caustic media prior to analysis.
Inorg-040	The concentrations of the major ions (mg/L) are converted to milliequivalents and summed. The ionic balance should be within +/- 15% ie total anions = total cations +/-15%.
Inorg-055	Nitrate - determined colourimetrically. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a water extraction.
Inorg-057	Ammonia - determined colourimetrically, based on APHA latest edition 4500-NH3 F. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a KCl extraction.
Inorg-060	Phosphate determined colourimetrically based on EPA365.1 and APHA latest edition 4500 P E. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a water extraction.
Inorg-079	TOC determined using a TOC analyser using the combustion method. Dissolved requires filtering prior to determination. Analysis using APHA latest edition 5310B.
Inorg-081	Anions - a range of Anions are determined by Ion Chromatography, in accordance with APHA latest edition, 4110-B. Waters samples are filtered on receipt prior to analysis. Alternatively determined by colourimetry/turbidity using Discrete Analyser.
Inorg-091	BOD - Analysed in accordance with APHA latest edition 5210 D and in house INORG-091.

Envirolab Reference: 362034

Revision No: R00

Method ID	Methodology Summary
Inorg-118	Hexavalent Chromium (Cr6+) - determined firstly by separation using ion chromatography followed by the colourimetric analytical finish.
	Water samples are ideally field filtered into alkali preserved containers prior to receipt for dissolved Cr6+ analysis. Unfiltered water samples into alkali preserved containers (or pH adjusted to pH 8-9 on receipt) can be classified as Total (unfiltered) Cr6+.
	Please note, for 'Total/Unfiltered' Trivalent Chromium in waters [calculated], these results may be exaggerated due to the digestive limitation of 'Total/Unfiltered' Hexavalent Chromium in NaOH at pH 8-9 compared to more comprehensive digestion for Total Chromium using the mineral acids HNO3 and HCI.
	Solid (includes soils, filters, paints, swabs for example) samples are extracted in a buffered catalysed solution prior to the analytical finish above. Water extractable options are available (e.g. as an option for filters) on request.
	Impingers may need pH adjusting to pH 8-9 prior to IC-colourimetric analytical finish.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Metals-022	Determination of various metals by ICP-MS.
	Please note for Bromine and Iodine, any forms of these elements that are present are included together in the one result reported for each of these two elements.
	Salt forms (e.g. FeO, PbO, ZnO) are determined stoichiometrically from the base metal concentration.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-021/022/025	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD and/or GC-MS/GC-MSMS.
	Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.
Org-023	Water samples are analysed directly by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.

Envirolab Reference: 362034

Revision No: R00

QUAL	ITY CONTROL	.: VHC's i	n water			Du	ıplicate		Spike Red	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W3	[NT]
Date Extracted	-			20/09/2024	4	20/09/2024	23/09/2024		20/09/2024	
Date Analysed	-			23/09/2024	4	23/09/2024	23/09/2024		23/09/2024	
Dichlorodifluoromethane	μg/L	10	Org-023	<10	4	<10	<10	0	[NT]	
Chloromethane	μg/L	10	Org-023	<10	4	<10	<10	0	[NT]	
Vinyl Chloride	μg/L	10	Org-023	<10	4	<10	<10	0	[NT]	
Bromomethane	μg/L	10	Org-023	<10	4	<10	<10	0	[NT]	
Chloroethane	μg/L	10	Org-023	<10	4	<10	<10	0	[NT]	
Trichlorofluoromethane	μg/L	10	Org-023	<10	4	<10	<10	0	[NT]	
1,1-Dichloroethene	μg/L	1	Org-023	<1	4	<1	<1	0	[NT]	
Trans-1,2-dichloroethene	μg/L	1	Org-023	<1	4	<1	<1	0	[NT]	
1,1-dichloroethane	μg/L	1	Org-023	<1	4	<1	<1	0	102	
Cis-1,2-dichloroethene	μg/L	1	Org-023	<1	4	<1	<1	0	[NT]	
Bromochloromethane	μg/L	1	Org-023	<1	4	<1	<1	0	[NT]	
Chloroform	μg/L	1	Org-023	<1	4	<1	<1	0	104	
2,2-dichloropropane	μg/L	1	Org-023	<1	4	<1	<1	0	[NT]	
1,2-dichloroethane	μg/L	1	Org-023	<1	4	<1	<1	0	104	
1,1,1-trichloroethane	μg/L	1	Org-023	<1	4	<1	<1	0	98	
1,1-dichloropropene	μg/L	1	Org-023	<1	4	<1	<1	0	[NT]	
Carbon tetrachloride	μg/L	1	Org-023	<1	4	<1	<1	0	[NT]	
Dibromomethane	μg/L	1	Org-023	<1	4	<1	<1	0	[NT]	
1,2-dichloropropane	μg/L	1	Org-023	<1	4	<1	<1	0	[NT]	
Trichloroethene	μg/L	1	Org-023	<1	4	<1	<1	0	111	
Bromodichloromethane	μg/L	1	Org-023	<1	4	<1	<1	0	105	
trans-1,3-dichloropropene	μg/L	1	Org-023	<1	4	<1	<1	0	[NT]	
cis-1,3-dichloropropene	μg/L	1	Org-023	<1	4	<1	<1	0	[NT]	
1,1,2-trichloroethane	μg/L	1	Org-023	<1	4	<1	<1	0	[NT]	
1,3-dichloropropane	μg/L	1	Org-023	<1	4	<1	<1	0	[NT]	
Dibromochloromethane	μg/L	1	Org-023	<1	4	<1	<1	0	104	
1,2-dibromoethane	μg/L	1	Org-023	<1	4	<1	<1	0	[NT]	
Tetrachloroethene	μg/L	1	Org-023	<1	4	<1	<1	0	101	
1,1,1,2-tetrachloroethane	μg/L	1	Org-023	<1	4	<1	<1	0	[NT]	
Chlorobenzene	μg/L	1	Org-023	<1	4	9	8	12	[NT]	
Bromoform	μg/L	1	Org-023	<1	4	<1	<1	0	[NT]	
1,1,2,2-tetrachloroethane	μg/L	1	Org-023	<1	4	<1	<1	0	[NT]	
1,2,3-trichloropropane	μg/L	1	Org-023	<1	4	<1	<1	0	[NT]	
Bromobenzene	μg/L	1	Org-023	<1	4	<1	<1	0	[NT]	
2-chlorotoluene	μg/L	1	Org-023	<1	4	<1	<1	0	[NT]	
4-chlorotoluene	μg/L	1	Org-023	<1	4	<1	<1	0	[NT]	
1,3-dichlorobenzene	μg/L	1	Org-023	<1	4	<1	<1	0	[NT]	
1,4-dichlorobenzene	μg/L	1	Org-023	<1	4	5	6	18	[NT]	

QUALITY	Y CONTROL	.: VHC's i	n water			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W3	[NT]
1,2-dichlorobenzene	μg/L	1	Org-023	<1	4	<1	<1	0	[NT]	
1,2-dibromo-3-chloropropane	μg/L	1	Org-023	<1	4	<1	<1	0	[NT]	
1,2,4-trichlorobenzene	μg/L	1	Org-023	<1	4	<1	<1	0	[NT]	
Hexachlorobutadiene	μg/L	1	Org-023	<1	4	<1	<1	0	[NT]	
1,2,3-trichlorobenzene	μg/L	1	Org-023	<1	4	<1	<1	0	[NT]	
Surrogate Dibromofluoromethane	%		Org-023	101	4	100	100	0	98	
Surrogate Toluene-d8	%		Org-023	96	4	100	101	1	100	
Surrogate 4-Bromofluorobenzene	%		Org-023	84	4	88	93	6	100	[NT]

QUALITY CONTR	ROL: vTRH(0	C6-C10)/E	BTEXN in Water			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W3	[NT]
Date extracted	-			20/09/2024	4	20/09/2024	23/09/2024		20/09/2024	
Date analysed	-			23/09/2024	4	23/09/2024	23/09/2024		23/09/2024	
TRH C ₆ - C ₉	μg/L	10	Org-023	<10	4	26	33	24	104	
TRH C ₆ - C ₁₀	μg/L	10	Org-023	<10	4	28	36	25	104	
Benzene	μg/L	1	Org-023	<1	4	3	4	29	104	
Toluene	μg/L	1	Org-023	<1	4	<1	<1	0	103	
Ethylbenzene	μg/L	1	Org-023	<1	4	<1	<1	0	104	
m+p-xylene	μg/L	2	Org-023	<2	4	<2	<2	0	104	
o-xylene	μg/L	1	Org-023	<1	4	<1	<1	0	106	
Naphthalene	μg/L	1	Org-023	<1	4	4	5	22	[NT]	
Surrogate Dibromofluoromethane	%		Org-023	101	4	100	100	0	98	
Surrogate Toluene-d8	%		Org-023	96	4	100	101	1	100	
Surrogate 4-Bromofluorobenzene	%		Org-023	84	4	88	93	6	100	[NT]

QUALITY CON	ITROL: svTF	RH (C10-0	C40) in Water			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W3	362034-2
Date extracted	-			23/09/2024	1	23/09/2024	23/09/2024		23/09/2024	23/09/2024
Date analysed	-			23/09/2024	1	23/09/2024	23/09/2024		23/09/2024	24/09/2024
TRH C ₁₀ - C ₁₄	μg/L	50	Org-020	<50	1	<50	<50	0	120	101
TRH C ₁₅ - C ₂₈	μg/L	100	Org-020	<100	1	<100	<100	0	114	87
TRH C ₂₉ - C ₃₆	μg/L	100	Org-020	<100	1	<100	<100	0	114	114
TRH >C ₁₀ - C ₁₆	μg/L	50	Org-020	<50	1	<50	<50	0	120	101
TRH >C ₁₆ - C ₃₄	μg/L	100	Org-020	<100	1	<100	<100	0	114	87
TRH >C ₃₄ - C ₄₀	μg/L	100	Org-020	<100	1	<100	<100	0	114	114
Surrogate o-Terphenyl	%		Org-020	100	1	88	101	14	113	99

QUAL	ITY CONTRO	_: PAHs ir	n Water			Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	362034-2	
Date extracted	-			23/09/2024	1	23/09/2024	23/09/2024		23/09/2024	23/09/2024	
Date analysed	-			24/09/2024	1	23/09/2024	23/09/2024		24/09/2024	23/09/2024	
Naphthalene	μg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	65	60	
Acenaphthylene	μg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Acenaphthene	μg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	62	63	
Fluorene	μg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	67	61	
Phenanthrene	μg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	73	60	
Anthracene	μg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Fluoranthene	μg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	72	67	
Pyrene	μg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	70	66	
Benzo(a)anthracene	μg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Chrysene	μg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	85	74	
Benzo(b,j+k)fluoranthene	μg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	[NT]	[NT]	
Benzo(a)pyrene	μg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	67	61	
Indeno(1,2,3-c,d)pyrene	μg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Dibenzo(a,h)anthracene	μg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Benzo(g,h,i)perylene	μg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Surrogate p-Terphenyl-d14	%		Org-022/025	80	1	64	76	17	87	75	

Envirolab Reference: 362034

Revision No: R00

QUALITY CONT	ROL: Organoc	hlorine P	esticides in Water			Du	ıplicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	362034-2
Date extracted	-			23/09/2024	1	23/09/2024	23/09/2024		23/09/2024	23/09/2024
Date analysed	-			24/09/2024	1	23/09/2024	23/09/2024		24/09/2024	23/09/2024
alpha-BHC	μg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	71	65
нсв	μg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	[NT]	[NT]
beta-BHC	μg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	74	66
gamma-BHC	μg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	[NT]	[NT]
Heptachlor	μg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	73	69
delta-BHC	μg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	[NT]	[NT]
Aldrin	μg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	61	66
Heptachlor Epoxide	μg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	80	73
gamma-Chlordane	μg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	[NT]	[NT]
alpha-Chlordane	μg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	[NT]	[NT]
Endosulfan I	μg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	[NT]	[NT]
pp-DDE	μg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	70	67
Dieldrin	μg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	75	67
Endrin	μg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	78	68
Endosulfan II	μg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	[NT]	[NT]
pp-DDD	μg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	81	73
Endrin Aldehyde	μg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	[NT]	[NT]
pp-DDT	μg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	[NT]	[NT]
Endosulfan Sulphate	μg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	75	69
Methoxychlor	μg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	[NT]	[NT]
Surrogate 4-Chloro-3-NBTF	%		Org-022/025	92	1	72	69	4	78	72

QUALITY	CONTROL: OI	Pesticid	es in Water			Du	plicate	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	362034-2	
Date extracted	-			23/09/2024	1	23/09/2024	23/09/2024		23/09/2024	23/09/2024	
Date analysed	-			24/09/2024	1	23/09/2024	23/09/2024		24/09/2024	23/09/2024	
Dichlorvos	μg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	74	70	
Mevinphos	μg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	[NT]	[NT]	
Phorate	μg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	[NT]	[NT]	
Dimethoate	μg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	[NT]	[NT]	
Diazinon	μg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	[NT]	[NT]	
Disulfoton	μg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	[NT]	[NT]	
Chlorpyriphos-methyl	μg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	[NT]	[NT]	
Parathion-Methyl	μg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	[NT]	[NT]	
Ronnel	μg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	65	62	
Fenitrothion	μg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	97	78	
Malathion	μg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	82	65	
Chlorpyriphos	μg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	67	65	
Fenthion	μg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	[NT]	[NT]	
Parathion	μg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	87	75	
Bromophos ethyl	μg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	[NT]	[NT]	
Methidathion	μg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	[NT]	[NT]	
Fenamiphos	μg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	[NT]	[NT]	
Ethion	μg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	85	67	
Phosalone	μg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	[NT]	[NT]	
Azinphos-methyl (Guthion)	μg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	[NT]	[NT]	
Coumaphos	μg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	[NT]	[NT]	
Surrogate 4-Chloro-3-NBTF	%		Org-022/025	92	1	68	67	1	78	72	

QUALITY	Y CONTROL	.: PCBs ir	n Water			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	362034-2
Date extracted	-			23/09/2024	1	23/09/2024	23/09/2024		23/09/2024	23/09/2024
Date analysed	-			24/09/2024	1	23/09/2024	23/09/2024		24/09/2024	23/09/2024
Aroclor 1016	μg/L	2	Org-021/022/025	<2	1	<2	<2	0	[NT]	[NT]
Aroclor 1221	μg/L	2	Org-021/022/025	<2	1	<2	<2	0	[NT]	[NT]
Aroclor 1232	μg/L	2	Org-021/022/025	<2	1	<2	<2	0	[NT]	[NT]
Aroclor 1242	μg/L	2	Org-021/022/025	<2	1	<2	<2	0	[NT]	[NT]
Aroclor 1248	μg/L	2	Org-021/022/025	<2	1	<2	<2	0	[NT]	[NT]
Aroclor 1254	μg/L	2	Org-021/022/025	<2	1	<2	<2	0	79	70
Aroclor 1260	μg/L	2	Org-021/022/025	<2	1	<2	<2	0	[NT]	[NT]
Surrogate 2-Fluorobiphenyl	%		Org-021/022/025	78	1	75	76	1	79	77

QUALITY CO	NTROL: Tot	al Phenol	ics in Water			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			19/09/2024	1	19/09/2024	19/09/2024		19/09/2024	[NT]
Date analysed	-			19/09/2024	1	19/09/2024	19/09/2024		19/09/2024	[NT]
Total Phenolics (as Phenol)	mg/L	0.05	Inorg-031	<0.05	1	0.1	0.1	0	97	[NT]

Envirolab Reference: 362034

Revision No: R00

QUALITY CON	TROL: All m	etals in w	ater-dissolved			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	362034-3
Date prepared	-			20/09/2024	2	19/09/2024	19/09/2024		20/09/2024	20/09/2024
Date analysed	-			20/09/2024	2	19/09/2024	19/09/2024		20/09/2024	20/09/2024
Aluminium-Dissolved	μg/L	10	Metals-022	<10	2	<10	<10	0	98	90
Arsenic-Dissolved	μg/L	1	Metals-022	<1	2	1	2	67	103	104
Barium-Dissolved	μg/L	1	Metals-022	<1	2	350	360	3	94	91
Cadmium-Dissolved	μg/L	0.1	Metals-022	<0.1	2	<0.1	<0.1	0	104	104
Cobalt-Dissolved	μg/L	1	Metals-022	<1	2	<1	<1	0	95	96
Chromium-Dissolved	μg/L	1	Metals-022	<1	2	10	9	11	97	101
Copper-Dissolved	μg/L	1	Metals-022	<1	2	7	7	0	93	89
Lead-Dissolved	μg/L	1	Metals-022	<1	2	<1	<1	0	108	88
Mercury-Dissolved	μg/L	0.05	Metals-021	<0.05	2	<0.05	<0.05	0	105	[NT]
Zinc-Dissolved	μg/L	1	Metals-022	<1	2	22	21	5	98	96
Iron-Dissolved	μg/L	10	Metals-022	<10	2	30	30	0	94	92
Manganese-Dissolved	μg/L	5	Metals-022	<5	2	7	9	25	95	94

QUALI	TY CONTRO	L: Ion Ba	lance			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date prepared	-			18/09/2024	[NT]		[NT]	[NT]	18/09/2024	
Date analysed	-			18/09/2024	[NT]		[NT]	[NT]	18/09/2024	
Calcium - Dissolved	mg/L	0.5	Metals-020	<0.5	[NT]		[NT]	[NT]	98	
Potassium - Dissolved	mg/L	0.5	Metals-020	<0.5	[NT]		[NT]	[NT]	99	
Sodium - Dissolved	mg/L	0.5	Metals-020	<0.5	[NT]		[NT]	[NT]	114	
Magnesium - Dissolved	mg/L	0.5	Metals-020	<0.5	[NT]		[NT]	[NT]	97	
Hydroxide Alkalinity (OH ⁻) as CaCO ₃	mg/L	5	Inorg-006	<5	[NT]		[NT]	[NT]	[NT]	
Bicarbonate Alkalinity as CaCO ₃	mg/L	5	Inorg-006	<5	[NT]		[NT]	[NT]	[NT]	
Carbonate Alkalinity as CaCO ₃	mg/L	5	Inorg-006	<5	[NT]		[NT]	[NT]	[NT]	
Total Alkalinity as CaCO ₃	mg/L	5	Inorg-006	<5	[NT]		[NT]	[NT]	120	
Sulphate, SO4	mg/L	1	Inorg-081	<1	[NT]		[NT]	[NT]	113	
Chloride, Cl	mg/L	1	Inorg-081	<1	[NT]		[NT]	[NT]	108	

QUALITY COI	Duplicate				Spike Recovery %					
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	362034-2
Date prepared	-			18/09/2024	1	18/09/2024	18/09/2024		18/09/2024	18/09/2024
Date analysed	-			18/09/2024	1	18/09/2024	18/09/2024		18/09/2024	18/09/2024
Hexavalent Chromium, Cr ⁶⁺ Low Level	mg/L	0.001	Inorg-118	<0.001	1	<0.001	<0.001	0	87	102
Ammonia as N in water	mg/L	0.005	Inorg-057	<0.005	1	0.051	0.055	8	105	110
BOD	mg/L	5	Inorg-091	<5	1	<10	[NT]		84	[NT]
Fluoride, F	mg/L	0.1	Inorg-026	<0.1	1	0.1	0.1	0	101	92
Total Organic Carbon	mg/L	1	Inorg-079	<1	1	4	4	0	110	86
Total Dissolved Solids (grav)	mg/L	5	Inorg-018	<5	1	13000	[NT]		89	[NT]
Phosphate as P in water	mg/L	0.005	Inorg-060	<0.005	1	0.073	0.074	1	106	95
Nitrate as N in water	mg/L	0.005	Inorg-055	<0.005	1	0.55	0.56	2	108	93
Electrical Conductivity	μS/cm	1	Inorg-002	<1	1	20000	[NT]		108	[NT]
рН	pH Units		Inorg-001	[NT]	1	7.0	[NT]		100	[NT]

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Control	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Where matrix spike recoveries fall below the lower limit of the acceptance criteria (e.g. for non-labile or standard Organics <60%), positive result(s) in the parent sample will subsequently have a higher than typical estimated uncertainty (MU estimates supplied on request) and in these circumstances the sample result is likely biased significantly low.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Envirolab Reference: 362034 Page | 29 of 30

Revision No: R00

Report Comments

MISC_INORG:The BOD PQL has been raised due to the limited amount of sample available for testing.

Envirolab Reference: 362034
Revision No: R00
Page | 30 of 30

Attachment 3 Groundwater Field Data Sheets

Project: E2424-0924 Scone	Sample ID: MWA
Client: UHSC	Sampler: DB
Site Address: Noblet Road Scone	Date: 16.9.24

Well Information						
<u>wen imormation</u>						
Monument damaged: Rusty	YES / NO / N/A	Well ID visible:			YES / NO /	N/A
Locked well casing:	YES / NO / N/A	Cap on PVC casi	ng:		YES / NO /	/ N/A
Cement footing damaged:	YES / NO / N/A	Water in monun	nent casing:		YES / NO /	N/A
Standing water, vegetation around monument:	YES / NO / N/A	Internal obstruc	tion in casing	g:	YES / NO /	N/A
Well Damaged:	YES / NO / N/A	Odours from gro	undwater:		YES / NO /	N/A
Casing above ground:0.77	. m agl	Weather Condit	ions:			
Standing water level: 6.568	m bgl	Temperature	>15 🗆	15-20	X	
Total well depth:15.66	m bgl		20-25 □	25-30		
Initial well volume:9.092	L					
Water level after purging:8.202	m bgl	Clear X	Partly clo	udy □	O	vercast□
Volume of water purged:1.634	L					
Water level at time of sampling:8.484	m bgl	Calm □	Slight br	eeze X	Moderate l	breeze 🗆
Well purged dry:	YES / NO		7	Windy		
Purging equipment:	Bailer					
Sample equipment:	Bailer	Fine X	Showers		Rain	

Note: 50mm internal diameter pipe = 1.96 L/m.

Water Quality Details:

Time am/pm	DO (mg/L ⁻¹)	EC (μS cm ⁻¹)	рН	Redox (mV)	Temp (°C)	Salinity	Comments
12:07m	2.99	18.56	6.57	29.6	22.43	11.01	Water clear no smell or sheen
12:09pm	3.26	18.60	6.64	26.6	21.20	11.02	
12:11pm	2.69	18.52	6.58	32.9	20.77	11.0	
12:13pm	2.49	18.58	6.55	37.9	20.91	11.03	

Water was clear no odour or sheen or hydrocarbons. Vegetation around monument and no stand water around monument.								
water around mondifient.								

Project: E2424-0924 Scone	Sample ID: MWB
Client: UHSC	Sampler: DB
Site Address: Noblet Road Scone	Date: 16.9.24

Well Information						
Monument damaged: Rusty	YES / NO / N/A	Well ID visible:			YES / NO / N/A	A
Locked well casing:	YES / NO / N/A	Cap on PVC casi	ng:		YES / NO / N/A	A
Cement footing damaged:	YES / NO / N/A	Water in monun	ent casing:		YES / NO / N/A	A
Standing water, vegetation around monument:	YES / NO / N/A	Internal obstruc	tion in casing	g:	YES / NO / N/A	A
Well Damaged: Rusty	YES / NO / N/A	Odours from gro	undwater:		YES / NO / N/A	A
Casing above ground:0.8	m agl	Weather Conditi	ions:			
Standing water level: 6.575	m bgl	Temperature	>15 🗆	15-20	X	
Total well depth:14.04	m bgl		20-25 □	25-30		
Initial well volume:7.465	L					
Water level after purging:7.373	m bgl	Clear X	Partly clo	oudy□	Overcast	
Volume of water purged:0.798	L					
Water level at time of sampling:7.125	m bgl	Calm □	Slight br	eeze X	Moderate bree	ze 🗆
Well purged dry:	YES / NO		Wi	ndy □		
Purging equipment:	Bailer					
Sample equipment:	Bailer	Fine X	Showers		Rain	

Note: 50mm internal diameter pipe = 1.96 L/m.

Water Quality Details:

Time am / pm	DO (mg/L ⁻¹)	EC (μS cm ⁻¹)	рН	Redox (mV)	Temp (°C)	Salinity	Comments
12:52pm	3.02	12.88	6.85	49.2	21.83	7.39	Clear water, no sheen
12:54pm	3.914	12.75	6.71	52.9	20.7	7.34	
12:56pm	3.48	12.76	6.71	54.5	20.4	7.36	

Water was clear no odour or sheen or hydrocarbons. Vegetation around monument and no standi water around monument.								

Project: E2424-0924 Scone	Sample ID: MWC
Client: UHSC	Sampler: DB
Site Address: Noblet Road Scone	Date: 16.09.24

Well Information						
Monument damaged: Rusty	YES / NO / N/A	Well ID visible:			YES / NO / N/	A
Locked well casing:	YES / NO / N/A	Cap on PVC casi	ng:		YES / NO / N/	'A
Cement footing damaged:	YES / NO / N/A	Water in monun	nent casing:		YES / NO / N/	A
Standing water, vegetation around monument:	YES / NO / N/A	Internal obstruc	tion in casing	g:	YES / NO / N/	A
Well Damaged:	YES / NO / N/A	Odours from gro	undwater:		YES / NO / N/	A
Casing above ground:0.75	. m agl	Weather Condit	ions:			
Standing water level: 5.392	m bgl	Temperature	>15 🗆	15-20 X	ζ	
Total well depth:12.6	m bgl		20-25 🗆	25-30	□ >30 □	
Initial well volume:7.208	L					
Water level after purging:5.532	m bgl	Clear X	Partly clo	udy □	Overcast	X
Volume of water purged:0.14	L					
Water level at time of sampling:5.638	m bgl	Calm □	Slight br	eeze X	Moderate bree	eze 🗆
Well purged dry:	YES / NO		Wi	ndy □		
Purging equipment:	Bailer					
Sample equipment:	Bailer	Fine X	Showers		Rain	

Note: 50mm internal diameter pipe = 1.96 L/m.

Water Quality Details:

Time am / pm	DO (mg/L ⁻¹)	EC (μS cm ⁻¹)	рН	Redox (mV)	Temp (°C)	Salinity	Comments
1:27pm	2.36	14.36	6.67	47.6	21.02	8.34	Clear water
1:29pm	1.54	14.1	6.57	46.6	20.37	8.11	
1:31pm	2.93	14.05	6.61	45.3	20.12	8.01	

Vater was clear top pf column, brown tinge as you go deeper into column, no odour or sheen or ydrocarbons. Vegetation around monument and no standing water around monument.							

Project: E2424-0924 Scone	Sample ID: MWD Leachate well
Client: UHSC	Sampler: DB
Site Address: Noblet Road Scone	Date: 16.09.24

Well Information						
Monument damaged:	YES / NO / N/A	Well ID visible:			YES / NO / N/A	
Locked well casing:	YES / NO / N/A	Cap on PVC casi	ng:		YES / NO / N/	'A
Cement footing damaged:	YES / NO / N/A	Water in monun	nent casing:		YES / NO / N	/A
Standing water, vegetation around monument:	YES / NO / N/A	Internal obstruc	tion in casing	g:	YES / NO / N	/A
Well Damaged: Rusty	YES / NO / N/A	Odours from gro	undwater:		YES / NO / N	/A
Casing above ground:N/A	. m agl	Weather Condit	ions:			
Standing water level: 9.748	m bgl	Temperature	>15 🗆	15-20]	
Total well depth:12.96	m bgl		20-25 X	25-30	□ >30 □	
Initial well volume:3.212	L					
Water level after purging:10.348	m bgl	Clear □	Partly clo	udy X	Overcast	
Volume of water purged:0.6	L					
Water level at time of sampling:9.933	m bgl	Calm □	Slight br	eeze X	Moderate bre	eze 🗆
Well purged dry:	YES / NO		Wi	ndy □		
Purging equipment:	Bailer					
Sample equipment:	Bailer	Fine X	Showers		Rain	

Note: 50mm internal diameter pipe = 1.96 L/m.

Water Quality Details:

Time am / pm	DO (mg/L ⁻¹)	EC (μS cm ⁻¹)	рН	Redox (mV)	Temp (°C)	Salinity	Comments
2:42pm	1.69	6979	7.13	-158.5	25.29	3.82	
2:44pm	2.19	7677	7.13	-148.9	26.16	4.23	
2.46pm	1.83	7715	7.13	-150.4	26.1	4.26	

Vater was green tinged with methane odour and minor sediment, no sheen or hydrocarbons.	
round level. Well, was surrounded by tyres.	cut to

Project: E2424-0924 Scone	Sample ID: MWE
Client: UHSC	Sampler: DB
Site Address: Noblet Road Scone	Date: 16.09.24

Well Information						
wen imormation						
Monument damaged: Rusty	YES / NO / N/A	Well ID visible:			YES / NO / N/	Α
Locked well casing:	YES / NO / N/A	Cap on PVC casi	ng:		YES / NO / N	'A
Cement footing damaged:	YES / NO / N/A	Water in monun	nent casing:		YES / NO / N/	Α
Standing water, vegetation around monument:	YES / NO / N/A	Internal obstruc	tion in casing	g:	YES / NO / N/	Α
Well Damaged: Rusty	YES / NO / N/A	Odours from gro	undwater:		YES / NO / N/	Α
Casing above ground:0.68	. m agl	Weather Condit	ions:			
Standing water level: 4.123	m bgl	Temperature	>15 🗆	15-20 E]	
Total well depth:9.46	m bgl		20-25 🗆	25-30 X	X >30 □	
Initial well volume:5.337	L					
Water level after purging:4.6544	m bgl	Clear □	Partly clo	oudy X	Overcast	
Volume of water purged:0.531	L					
Water level at time of sampling:4.722	m bgl	Calm □	Slight br	eeze X	Moderate bree	eze 🗆
Well purged dry:	YES / NO		Wi	ndy □		
Purging equipment:	Bailer					
Sample equipment:	Bailer	Fine X	Showers		Rain	

Note: 50mm internal diameter pipe = 1.96 L/m.

Water Quality Details:

water	Quanty L	ctans.					
Time	DO	EC	рН	Redox	Temp	Salinity	Comments
am / pm	(mg/L ⁻¹)	(µS cm ⁻¹)		(mV)	(°C)		
2:05pm	3.54	31.8	6.91	-89.1	20.45	1.62	Clear water
2:07pm	4.2	3167	6.85	-97.3	19.71	1.66	
2:09pm	6.75	2464	6.86	-91.2	19.24	1.28	
2:11pm	2.55	2749	6.84	-90.9	19.06	1.43	

Water was clear, no sheen or hydrocarbons. Vegetation around monument and no standing water around monument.								

Attachment 4 Water Quality Meter Calibration Certificate

Hanna Instruments Pty Ltd

18 Fiveways Boulevard Keysborough VIC 3173

Ph: (03) 9769 0666

Meter S/N: M04200028111

pH probe S/N: J79355

EC probe S/N: J88036

DO probe S/N: 03110092

Certificate #: HC00492/2024

CALIBRA	MOIT	CEDTI	EICATE

Meter part #:

HI98194

pH probe part #:

HI7698194-1 * HI7698194-3

EC probe # DO probe #

HI7698494-5

Customer:

Engage Environmental

Contact #:

Stephen Challinor

Calibration Date:

11/09/2024

Calibration Time:

11:30

pH BUFFERS USED FOR CALIBRATION		CALIBRATION DATA		
Item Code	Buffer description	Buffer Lot Number & Expiry	Original pH value	Calibrated pH value
HI7004	pH Buffer 4.01	Lot 9535 Expiry 11/2028	pH 3.95	pH 4.01
HI7007	pH Buffer 7.01	Lot 9507 Expiry 11/2028	pH 7.06	pH 7.01
HI7010	pH Buffer 10.01	Lot 9751 Expiry 01/2026	pH 9.95	pH 10.01

EC STANDARDS USED FOR CALIBRATION		CALIBRATION DATA		
Item Code	Standard description	Standard Lot Number & Expiry		Calibrated EC value
HI7039	5000 uS/cm	Lot 7204 Expiry 11/2026	5490 uS/cm	5000 uS/cm

DO STANDARDS USED FOR CALIBRATION			CALIBRATION DATA	
Item Code	Standard description	Standard Lot Number & Expiry		Calibrated DO value
N/A	100% DO	N/A	96.90%	100.00%

pH CALIBRATION R	ESULTS	
Offset	-14.8	
Slope A (%)	98%	
Slope B (%)	95%	

DO CALIBRATION RESULTS
Point 1 100%

EC CALIBRATION RESULTS

EC Point

5000 uS/cm

Cell

4.295 / cm

Comments or Remarks:

ATC (Automatic Temperature Compensation) to 25°C was applied during calibration HANNA buffers and standards were used for calibration of the meter. HANNA buffers and standards are standardised with high precision meters calibrated to NIST references.

 Attila	
Service Personnel	