

PROJECT NUMBER – E04-0919 SEPTEMBER 2019

Document Control Number - Cooo167

E: admin@engage-es.com.au

M: 0478 362 005

ENGAGE ENVIRONMENTAL SERVICES

ABN 13 629 353 662

GROUNDWATER MONITORING

SCONE WASTE FACILITY NOBLET ROAD SCONE NSW

DOCUMENT CONTROL INFORMATION

Project Name - Groundwater Monitoring - Scone Waste Facility - Quarterly Monitoring Round

Client - Upper Hunter Shire Council

Project Number - E04-0919

Prepared – Stephen Challinor

Reviewed By and Approved for Release By – STC/SJC

Date - 20-9-2019

OFFICE 113 Reservoir Rd Glendale NSW 2285

Ph: 0478 362 005

Email: admin@engage-es.com.au

FIELD OFFICE Unit 1, 104 George St Singleton NSW 2330

Ph: 0478 364 588

Engage Environmental Services Pty Limited: ABN 13 629 353 662

WAIVER/DISCLAIMER/LIMITATION

The information contained in these documents is confidential, privileged and only for the information of the intended recipient and may not be used, published or redistributed without the prior written consent of Engage Environmental Services Pty Limited (Engage). Engage undertakes all exercises with reasonable skill and professional attention in the provision of services, including advice to the Client.

The opinions expressed are in good faith and while every care has been taken in preparing these documents, Engage makes no representations and gives no warranties of whatever nature in respect of these documents, including but not limited to the accuracy or completeness of any information, facts and/or opinions contained therein.

Engage, the directors, employees and agents cannot be held liable for the use of and reliance of the opinions, estimates, assumptions and findings in these documents.

Responsibility and any liability arising from misinterpretation or misuse by third parties as to the contents of the reports are not Engage's responsibility and will not be liable.

Information supplied, in electronic form, print form or verbally expressed to Engage is not verified for accuracy, validity, completeness or comprehensiveness unless part of the project being undertaken is a third-party view. Information supplied is deemed to be complete and accurate.

Where site inspections, monitoring, or other fieldwork have taken place, the report is based on the information supplied by the client, observations, laboratory results and any discussions with regulatory authorities.

ABBREVIATIONS

The following is a list of common abbreviations used in the Contamination Sector within environmental reports.

Benzo(a)Pyrene B(a)P Below Ground Level **BGL**

Benzene, Toluene, Ethyl Benzene, Xylene **BTEX**

CLM Contaminated Land Management

CSM Conceptual Site Model DA **Development Application**

DP Deposited Plan

DQI Data Quality Indicator DQO **Data Quality Objective**

Ecological Investigation Level EIL

Environment Protection Authority (NSW) EPA EPL Environmental Protection License

ESL Ecological Screening Level

Limit of Reporting LOR

Allotment LOT Monitoring Well MW

National Association of Testing Authorities **NATA NEPC** National Environment Protection Council **NEPM** National Environment Protection Measure

NSW New South Wales

OCP Organochlorine Pesticides

OEH Office of Environmental and Heritage Organophosphorus Pesticides **OPP PAH** Polycyclic Aromatic Hydrocarbons Potential Contaminant of Concern **PCOC PCB**

Polychlorinated Biphenyls

Quality Assurance and Quality Control QA/QC

SAC Site Acceptance Criteria

SEPP State Environmental Planning Policy

Standing Water Level **SWL**

Toxicity Characteristic Leaching Procedure **TCLP**

Total Recoverable Hydrocarbons TRH Upper Hunter Shire Council **UHSC** VOC **Volatile Organic Compounds**

Work Health Safety WHS

TABLE OF CONTENTS

<u>1.0</u>	INTRODUCTION.	
Ge	<u>neral</u>	
<u>Bri</u>	efing	
<u>2.0</u>	SITE CRITERIA A	ND SAMPLING FREQUENCY2
3.0	SAMPLING METH	<u> 10DOLOGY</u> 3
Gre	oundwater Samplir	<u>1g</u>
<u>4.0</u>	RESULTS	4
<u>5.0</u>	DISCUSSION	9
MV	<u>VA</u>	9
MV	<u>VB</u>	9
MV	<u>vc</u>	9
MV	<u>vD</u>	10
MV	<u>ve</u>	10
Sit	e and Maintenance	13
<u>6.0</u>	<u>conclusions</u>	
<u>REFI</u>	ERENCES	
FIGU	URES	
Figu	re 1	Site layout with sample locations
8		
ATT	ACHMENTS	
AII	ACHMENTS	
Atta	chment 1	NATA Accredited Laboratory Results
Atta	chment 2	YSI water quality meter calibration certificate
Atta	chment 3	Data log
Atta	chment 4	Groundwater Field Data Sheets

1

1.0 INTRODUCTION

General

Under the requirements of the NSW EPA Environmental Protection Licence (EPL) 5863, Upper Hunter Shire Council (UHSC) is required to conduct quarterly and annual groundwater monitoring of the Scone Waste Facility located on Noblet Road, Scone, NSW, 2337.

The Quarterly Groundwater Monitoring Report provides a snapshot of the groundwater conditions at the Site in relation to the current Site Criteria and satisfies the groundwater monitoring requirements of the EPL.

The Scone Waste Facility is an active landfill, it has the potential to be a polluting activity or to adversely impact the groundwater within the immediate vicinity and down hydraulic gradient of the site if there was a leak within the landfill.

Engage Environmental Services (Engage) was commissioned by UHSC to undertake this quarterly round of groundwater monitoring at the site. The quarterly groundwater monitoring was carried out on 5th September 2019.

This report has been prepared utilising information supplied by the client, publicly accessible information, information obtained as part of the onsite fieldwork and analysis, information from Government bodies and from experience, knowledge, and current industry practice.

Briefing

The briefing provided by Upper Hunter Shire Council and contained within EPL 5863 indicates that quarterly groundwater monitoring is required at five locations on the site, monitoring wells A to E (MWA-MWE). Monitoring Well D is located within the landfill and the monitoring well accesses the perched water table (leachate) within the landfill. Comparisons against established criteria and historical data allow for trending of data. Trending of data can highlight seasonal variations, increases in analyte concentrations, decreases in analyte concentrations and fluctuations within the dataset. Over a time period the dataset can reveal increasing/decreasing trends highlighting potential site issues.

Refer to **Figure 1**: Site Layout with Sample Locations

2.0 SITE CRITERIA AND SAMPLING FREQUENCY

The groundwater analytical suite and sampling frequency were provided by UHSC and the EPL. Each of the wells have the same sampling regime and analytical suite for sample analysis. The site criterion are sourced from the Australian and New Zealand guidelines for fresh and marine water quality (ANZW 2018) 95% trigger values and National Environment Protection (Assessment of Site Contamination) Measure (NEPM) 2013, unless otherwise stated.

Table 1: Analytes, Site Criteria and Sampling Frequency for Groundwater Monitoring Wells - Quarterly.

	Analytes/Pollutant	Units	Site Criteria NEPM 2013 and ANZW 2018 Fresh Water 95%	Sampling Frequency
	Calcium	mg/L	NA	Quarterly
	Alkalinity (total)	mg/L	NA	Quarterly
	Chloride	mg/L	NA	Quarterly
IONS	Fluoride	mg/L	NA	Quarterly
	Potassium ¹	mg/L	410	Quarterly
	Magnesium	mg/L	NA	Quarterly
	Sulphate	mg/L	NA	Quarterly
HEAVY	Iron	mg/L	0.3	Quarterly
METALS	Manganese	mg/L	1.9	Quarterly
PHENOLS	Total phenolics	mg/L	0.32	Quarterly
ОСР	Organochlorine Pesticide ³ (OCP)	mg/L	0.00001	Quarterly
	рН	рН	6.5 – 8	Quarterly
	Sodium	mg/L	NA	Quarterly
MISC.	Ammonia ²	mg/L	0.9	Quarterly
INORGANICS	Nitrate	mg/L	50	Quarterly
	Total organic carbon	mg/L	4	Quarterly
. 347. 11.1111	Electrical conductivity		NA	Quarterly

^{1 -} World Health Organisation Guidelines for Drinking-water Quality 2009, Poor (acceptable) drinking water

^{2 -} Criteria value may not protect key species from chronic toxicity, refer to ANZW 2018 for further guidance.

^{3 -} A Trigger value for DDT is used in the absence of a criteria value for Total OCP. DDT has the lowest criteria of OCPs.

3.0 SAMPLING METHODOLOGY

Groundwater Sampling

The five well locations were identified on the site. The site map was cross-referenced to the markings on the monitoring wells to ensure the correct wells were being sampled. Purging and sampling of monitoring wells was conducted in accordance with the NEPM (NEPC, 2013) and the *Guidelines for the Assessment and Management of Groundwater Contamination* (NSW DECC, 2007).

Purging is the process of removing stagnant water from a well, immediately prior to sampling, causing its replacement by groundwater from the adjacent formation that is representative of actual aquifer conditions. In order to determine when a well has been adequately purged, the physical parameters (pH \pm 0.1 unit, electrical conductivity \pm 5%, temperature \pm 0.20, reduction-oxidation (redox) \pm 10%; and dissolved oxygen \pm 10%.) are monitored while the groundwater is removed during purging.

The physical parameters were measured at regular intervals using a YSI Quatro Pro Plus Water Quality Meter. Stable conditions were indicated by monitoring for three consecutive readings of the physical parameters.

Collection of samples were direct into laboratory issued sampling containers for specific analytes. Samples were obtained using a disposable bailer. Care was taken so the bailer did not contact the sample container. All samples were collected and filled into the correct sample containers, a meniscus was formed on each sampling container prior to sealing to reduce or eliminate head space. The samples were placed immediately into a chilled esky to prevent the loss of potential volatile components.

Decontamination procedures between sampling events and sampling locations was undertaken. Sampling equipment was cleaned before and after sampling to prevent cross contamination. The cleaning procedure included:

- New nitrile disposable gloves for each well;
- Washing and wipe down with phosphate free laboratory grade detergent;
- Rinsing of brush before using brush on equipment;
- Using a brush on equipment if necessary;
- Rinsing with deionised water and wipe down with new wipe if necessary; and,
- New disposable bailer used for each well.

Appropriate decontamination procedures were appropriate during groundwater sampling.

4.0 RESULTS

The five groundwater monitoring wells were sampled during the June 2019 sampling event, results are detailed in **Tables 2** to **6**. Comparisons have been made to the previous round of monitoring (June 2019). Refer to **Attachment 1** – NATA Accredited Laboratory Results and **Attachment 3** – Data Log.

There was one exceedance of the site criteria for September in MWA, TOC at a concentration of 6mg/L. Refer to Table 2.

Table 2 - Quarterly Groundwater Results and Comparison June-Sept 2019 (MWA)

	Analytes	Units	Site Criteria (mg/L)	MWA June 2019	MWA Sept 2019
	Calcium	mg/L	NA	600	610
	Alkalinity (total)	mg/L	NA	520	490
	Chloride	mg/L	NA	6500	6000
IONS	Fluoride	mg/L	NA	0.1	0.1
	Potassium ¹	mg/L	410	2.8	2.6
	Magnesium	mg/L	NA	1100	1200
	Sulphate	mg/L	NA	52	840
	Iron	mg/L	0.3	0.64	<lor< th=""></lor<>
HEAVY METALS	Manganese	mg/L	1.9	0.038	0.009
Phenols	Total phenolics	mg/L	0.32	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
OCPs	OCP ³	mg/L	0.00001	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
	рН	рН	6.5 – 8	6.7	6.6
MISC. INORGANICS	Sodium	mg/L	NA	2100	2700
	Ammonia ²	mg/L	0.9	<lor< th=""><th>< 0.005</th></lor<>	< 0.005
	Nitrate	mg/L	0.7	0.6	0.59
	Total Organic Carbon	mg/L	4	3	6
	EC	μS/cm	NA	19000	18000

 $^{{&}lt;} {\rm LOR} = {\rm No}$ Detection. Analyte is below the Laboratory LOR

^{1 -} World Health Organisation Guidelines for Drinking-water Quality 2009, Poor (acceptable) drinking water criteria.

 $^{{\}tt 2-Criteria\ value\ may\ not\ protect\ key\ species\ from\ chronic\ toxicity, refer\ to\ ANZW\ 2018\ for\ further\ guidance.}$

^{3 -} A Trigger value for DDT is used in the absence of a criteria value for Total OCP. DDT has the lowest criteria of OCPs.

There were two exceedances of the site criteria for September in MWB, Nitrate and TOC at concentrations of 0.71mg/L and 7mg/L respectively. Refer to Table 3.

Table 3 – Quarterly Groundwater Results and Comparison June - September 2019 (MWB)

	Analytes	Units	Site Criteria (mg/L)	MWB June 2019	MWB Sept 2019
	Calcium	mg/L	NA	560	580
	Alkalinity (total)	mg/L	NA	420	400
	Chloride	mg/L	NA	5200	4400
IONS	Fluoride	mg/L	NA	0.3	0.3
	Potassium ¹	mg/L	410	2.6	2.4
	Magnesium	mg/L	NA	740	720
	Sulphate	mg/L	NA	76	110
HEAVOYA4ETALO	Iron	mg/L	0.3	0.027	<lor< th=""></lor<>
HEAVY METALS	Manganese	mg/L	1.9	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
ОСР	OCP ³	mg/L	0.00001	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
PHENOLS	Total phenolics	mg/L	0.32	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
	рН	рН	6.5 – 8	6.9	7
	Sodium	mg/L	NA	1600	2100
	Ammonia ²	mg/L	0.9	<lor< th=""><th>0.017</th></lor<>	0.017
MISC. INORGANICS	Nitrate	mg/L	0.7	0.71	0.71
	Total Organic Carbon (TOC)	mg/L	4	7	7
	EC	μS/cm	NA	15000	14000

<LOR = No Detection. Analyte is below the Laboratory LOR

^{1 -} World Health Organisation Guidelines for Drinking-water Quality 2009, Poor (acceptable) drinking water criteria.

 $[{]f 2}$ - Criteria value may not protect key species from chronic toxicity, refer to ANZW 2018 for further guidance.

^{3 -} A Trigger value for DDT is used in the absence of a criteria value for Total OCP. DDT has the lowest criteria of OCPs.

There were two exceedances of the site criteria for September in MWC Nitrate and TOC at concentrations of 1.8mg/L and 18mg/L respectively. Refer to Table 4.

Table 4 – Quarterly Groundwater Results and Comparison June - September 2019 (MWC)

			Site	MWC	MWC
	Analytes	Units	Criteria	June	Sept
			(mg/L)	2019	2019
	Calcium	mg/L	NA	370	380
	Alkalinity (total)	mg/L	NA	690	670
	Chloride	mg/L	NA	4000	4200
IONS	Fluoride	mg/L	NA	0.3	0.2
	Potassium ¹	mg/L	410	2.1	1.8
	Magnesium	mg/L	NA	600	570
Su	Sulphate	mg/L	NA	160	170
LIE AVV NAETAL C	Iron	mg/L	0.3	12	<lor< th=""></lor<>
HEAVY WIETALS	Manganese	mg/L	1.9	5.8	1.1
PHENOLS	Total phenolics	mg/L	0.32	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
ОСР	OCP ³	mg/L	0.00001	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
	рН	рН	6.5 - 8	6.8	7
MISC. INORGANICS	Sodium	mg/L	NA	1700	2400
	Ammonia ²	mg/L	0.9	0.072	0.017
	Nitrate	mg/L	0.7	2.2	1.8
	Total Organic Carbon (TOC)	mg/L	4	80	18
	EC	μS/cm	NA	13000	13000

<LOR = No Detection. Analyte is below the Laboratory LOR

^{1 -} World Health Organisation Guidelines for Drinking-water Quality 2009, Poor (acceptable) drinking water criteria.

^{2 -} Criteria value may not protect key species from chronic toxicity, refer to ANZW 2018 for further guidance.

^{3 -} A Trigger value for DDT is used in the absence of a criteria value for Total OCP. DDT has the lowest criteria of OCPs.

MWD is a leachate monitoring well which provides access to the perched landfill leachate water table. The Site Criteria for this particular well is only used as a general indicator of the leachate water quality. Refer to Table 5.

Table 5 – Quarterly Groundwater Results and Comparison June – September 2019 (MWD)

	Analytes	Units	Site Criteria (mg/L)	MWD (leachate) June 2019	MWD (leachate) Sept 2019
	Calcium	mg/L	NA	79	94
	Alkalinity (total)	mg/L	NA	2700	2500
	Chloride	mg/L	NA	2900	2700
IONS	Fluoride	mg/L	NA	0.3	0.3
	Potassium ¹	mg/L	410	190	220
	Magnesium	mg/L	NA	170	230
	Sulphate	mg/L	NA	40	29
LIFANOV BAFTALC	Iron	mg/L	0.3	13	0.89
HEAVY METALS	Manganese	mg/L	1.9	0.21	0.19
PHENOLS	Total phenolics	mg/L	0.32	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
ОСР	OCP ³	mg/L	0.00001	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
	pH	рН	6.5 – 8	7.6	7.8
	Sodium	mg/L	NA	1900	2800
	Ammonia ²	mg/L	0.9	290	300
MISC. INORGANICS	Nitrate	mg/L	0.7	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
	Total Organic Carbon (TOC)	mg/L	4	170	280
	EC	μS/cm	NA	13000	14000

<LOR = No Detection. Analyte is below the Laboratory LOR

^{1 -} World Health Organisation Guidelines for Drinking-water Quality 2009, Poor (acceptable) drinking water criteria.

^{2 -} Criteria value may not protect key species from chronic toxicity, refer to ANZW 2018 for further guidance.

^{3 -} A Trigger value for DDT is used in the absence of a criteria value for Total OCP. DDT has the lowest criteria of OCPs.

There were two exceedances of the site criteria for June in MWE, Iron and TOC at concentrations of 9.4 mg/L and 340mg/L respectively. Refer to Table 5.

Table 5 -Quarterly Groundwater Results and Comparison June-September 2019 (MWE)

	Analytes	Units	Threshold Criteria (mg/L)	MWE June 2019	MWE Sept 2019
	Calcium	mg/L	NA	53	65
	Alkalinity (total)	mg/L	NA	1200	630
	Chloride	mg/L	NA	310	420
IONS	Fluoride	mg/L	NA	0.6	0.6
	Potassium ¹	mg/L	410	0.5	2.1
	Magnesium	mg/L	NA	57	69
	Sulphate	mg/L	NA	130	130
LIFANOV BAFTALS	Iron	mg/L	0.3	9.4	<lor< th=""></lor<>
HEAVY IVIETALS	AVY METALS Manganese	mg/L	1.9	0.22	0.031
PHENOLS	Total phenolics	mg/L	0.32	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
ОСР	OCP ³	mg/L	0.00001	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
	pH	рН	6.5 – 8	7.2	7.6
	Sodium	mg/L	NA	690	760
ANICO INODOANIOS	Ammonia ²	mg/L	0.9	0.052	0.011
MISC. INORGANICS	Nitrate	mg/L	0.7	0.01	0.008
	Total Organic Carbon (TOC)	mg/L	4	340	5
	EC	μS/c	NA	3100	3500

<LOR = No Detection. Analyte is below the Laboratory LOR

^{1 -} World Health Organisation Guidelines for Drinking-water Quality 2009, Poor (acceptable) drinking water criteria.

^{2 -} Criteria value may not protect key species from chronic toxicity, refer to ANZW 2018 for further guidance.

^{3 -} A Trigger value for DDT is used in the absence of a criteria value for Total OCP. DDT has the lowest criteria of OCPs

5.0 DISCUSSION

The inferred hydraulic gradient for the site is a down gradient towards Parsons Gully to the west. The location of the four wells surrounding the landfill place wells MWA, MWB and MWC down-hydraulic gradient and well MWE up-hydraulic gradient of the landfill. Well MWD is located within the perched landfill water table, this enables access to the leachate within the landfill.

The following is a summary of the significant results for June 2019 in relation to the Site Criteria. Key increasing trends, decreasing trends and exceedances of the threshold criteria are indicated.

MWA

MWA is located in the north west section of the site and is considered to be a down-hydraulic gradient monitoring well. There is farmland adjoining to the north and west of this location. The following changes have occurred in the water quality of MWA:

- Iron has decreased from 0.64mg/L to below the limit of reporting;
- Total Organic Carbon has increased from 3mg/L to 6mg/L, now above the site criteria (4mg/L); and,
- Sulphate has increased significantly from 52mg/L to 840mg/L, no site criteria.

All other analytes reported concentrations consistent with previous monitoring data.

MWB

MWB is located in the south west section of the site and is considered to be a down-hydraulic gradient monitoring well. There is farmland to the south and west of this location. The well has remained relatively stable. There are two exceedances of the site criteria:

- A concentration of TOC (7 mg/L) was reported in MWB exceeding the Site Criteria (4 mg/L). This is stable from the previous reporting period; and,
- Nitrate has remained relatively consistent with the previous sampling event with a concentration of 0.71mg/L, above the site criteria of 0.7mg/L.

All other analytes reported concentrations consistent with previous monitoring data.

MWC

MWC is located on the southern boundary of the site, down hydraulic gradient of the landfill and onsite dam. There is farmland to the south of well, along with a stand of vegetation immediately south of the well. This well has shown increasing turbidity with sedimentation in observations from the field.

There were two concentrations which exceeded the site criteria. The following changes have occurred in the water quality of MWC:

- A concentration of Manganese (1.1mg/L) was reported in MWC, now below the Site Criteria (1.9 mg/L). The June concentration was 5.8mg/L, there has been a decrease;
- A concentration of TOC (18 mg/L) was reported in MWC exceeding the Site Criteria (1.9 mg/L), which is a decrease from the previous reported concentration in June 2019 (80 mg/L);
- A concentration of Nitrate (1.8 mg/L) was reported in MWC exceeding the Site Criteria (0.7 mg/L), which is a small decrease from the previous reported concentration in June 2019 (2.2 mg/L); and,
- A concentration of Iron was a non detection decreasing from the June sampling event of 12 mg/L.

All other analytes reported concentrations consistent with previous monitoring data.

MWD

The water collected and analysed from well MWD is landfill leachate and as such the Site Criteria is not used to compare the results against. The results of MWD are used as an indicator of current conditions within the landfill with trends and seasonal variations apparent. MWD is also to be used as a comparison to the external monitoring wells.

Well MWD was reported to contain no detection of Nitrate, giving no indication that the Nitrate in the affected wells is sourced from the landfill being as this well is located in the perched leachate water table. The Nitrate may be migrating onto the site from the farmland to the north through the local ground water.

The following changes occurred in the water quality of the landfill leachate well MWD:

- Ammonia has remained steady at a concentration of 300 mg/L;
- Iron concentration of 0.89 mg/L has significantly decreased since June 2019 concentration of 13 mg/L; and,
- TOC has increased from 170 mg/L to a concentration of 280 mg/L.

MWE

MWE is located on the eastern boundary of the site and is considered to be an up-gradient groundwater monitoring well. There are a series of dams to the east of the well. The following changes have occurred in the water quality of MWC:

- A concentration of TOC (5 mg/L) was reported in MWE significantly decreasing from the previous round of monitoring 340mg/l in June 2019; and,
- Iron has decreased to a non-detection from the June concentration of 9.4mg/L.

All other analytes reported concentrations consistent with previous monitoring data.

The following analytes exceeded the Threshold Criteria during the September 2019 sampling event, excluding the Leachate Monitoring well (MWD); TOC in MWA, MWB, MWC and MWE, and Nitrate in MWB and MWC. Refer to **Attachment 3** – Data Log.

Site and Maintenance

The area has been in drought for some time and may be factors influencing the groundwater concentrations of some analytes in wells.

The weather conditions (drought and rain events) and surrounding land uses are likely impacting the local groundwater conditions. The apparent anomalies in the last round of monitoring may have been influenced by the rain event preceding the sampling event.

The concrete surrounding the base of several of the wells are cracked. These can be easily maintained, which would also reset a barrier for surface migrating into the groundwater. There was additional waste on the western side of the landfill, more than normal.

6.0 CONCLUSIONS

There are seasonal fluctuations observed with regional groundwater conditions. The recent weather conditions of drought and the rain may have influenced the groundwater conditions. Trending of these analytes over time may indicate a seasonal fluctuation, an anomaly or highlight an issue on the site (or surrounding area). The trending of analytes occurs in the annual groundwater monitoring report with a running comparison in the quarterly monitoring reports.

The results and discussion of the laboratory sample analysis from the Scone Waste Facility during the September 2019 quarterly sampling event displayed several ongoing exceedances of the Site Criteria from the previous monitoring period.

The following analytes exceeded the Site Criteria for the June 2019 sampling event; TOC in MWA, MWB, MWC and MWE, and Nitrate in MWB and MWC.

The previous higher than normal concentration of TOC which was noted in June for MWC and a major increase in MWE, have reduced to a more normal concentration range for these two wells.

Continued sampling and data collection will allow robust trending and statistical analysis of data to occur.

The next water sampling event will be an annual monitoring event which will be undertaken in December 2019.

REFERENCES

- Australian and New Zealand Guidelines for the Management of Contaminated Sites (ANZECC/NHMRC 1992);
- Australia and New Zealand Guidelines for Fresh and Marine Water Quality (ANZW, 2018);
- Australian Drinking Water Guidelines, National Water Quality Management Strategy 2011;
- Contaminated Land Management Act 1997 (NSW);
- Contaminated Sites: Guidelines for Consultants Reporting on Contaminated Sites (NSW EPA 2011);
- Contaminated Sites: Guidelines on Duty to Report Contamination under the Contamination
 Land Management Act 1997 (NSW DECC, 2009);
- Contaminated Sites: Guidelines for the Assessment and Management of Groundwater
 Contamination (NSW DEC, 2007);
- Contaminated Sites: Guidelines on Significant Risk of Harm from Contaminated Land and the Duty to Report (NSW EPA 1999);
- Contaminated Sites: Sampling Design Guidelines (NSW EPA 1995);
- Environmental Guidelines: Solid Waste Landfills (NSW EPA, 1996);
- Environmental Guidelines Solid Waste Landfills Second edition, (NSW EPA 2016);
- Health Based Soil Investigation Levels, Imray, P & Langley, A, National Environmental Health Forum Monographs, Soil Series No. 2 (2nd Ed), South Australian Health Commission (NEHF 1998);
- National Environment Protection (Assessment of Site Contamination) Measure (No.1)
 (NEPM, 2013) as amended;
- Storage and Handling of Dangerous Goods Code of Practice 2005;
- Work Health and Safety Act 2011 (NSW) and associated regulations.

FIGURE 1

SITE LAYOUT AND SAMPLING LOCATIONS

Legend

Monitoring Well Location

Image: Google Maps 2019

ENGAGE Environmental Services Pty Limited 113 Reservoir Rd Glendale NSW 2285

0478 362005

Figure 1 - Site Layout and Well Locations							
Client Project No. Figure No Date							
UHSC	E04-0619	1	17/6/2019				
	Scale	Compiled	Revision				
admin@engage-es.com.au	NA	SC	3				

ATTACHMENT 1 NATA ACCREDITED LABORATORY RESULTS

Envirolab Services Pty Ltd

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 225631

Client Details	
Client	Engage Environmental Services
Attention	Stephen Challinor
Address	113 Reservoir Rd, GLENDALE, NSW, 2285

Sample Details	
Your Reference	E04-01919, UHSC
Number of Samples	5 Water
Date samples received	06/09/2019
Date completed instructions received	06/09/2019

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details			
Date results requested by	13/09/2019		
Date of Issue	13/09/2019		
NATA Accreditation Number 2901. This document shall not be reproduced except in full.			
Accredited for compliance with ISC	0/IEC 17025 - Testing. Tests not covered by NATA are denoted with *		

Results Approved By

Diego Bigolin, Team Leader, Inorganics Greta Petzold, Chemist Josh Williams, Chemist Priya Samarawickrama, Senior Chemist **Authorised By**

Nancy Zhang, Laboratory Manager

OCP in water						
Our Reference		225631-1	225631-2	225631-3	225631-4	225631-5
Your Reference	UNITS	MWA	MWB	MWC	MWD	MWE
Date Sampled		05/09/2019	05/09/2019	05/09/2019	05/09/2019	05/09/2019
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	09/09/2019	09/09/2019	09/09/2019	09/09/2019	09/09/2019
Date analysed	-	10/09/2019	10/09/2019	10/09/2019	10/09/2019	10/09/2019
HCB	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
alpha-BHC	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
gamma-BHC	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
beta-BHC	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Heptachlor	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
delta-BHC	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Aldrin	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Heptachlor Epoxide	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
gamma-Chlordane	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
alpha-Chlordane	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Endosulfan I	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
pp-DDE	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Dieldrin	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Endrin	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
pp-DDD	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Endosulfan II	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
pp-DDT	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Endrin Aldehyde	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Endosulfan Sulphate	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Methoxychlor	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Surrogate TCMX	%	71	70	79	91	68

Total Phenolics in Water						
Our Reference		225631-1	225631-2	225631-3	225631-4	225631-5
Your Reference	UNITS	MWA	MWB	MWC	MWD	MWE
Date Sampled		05/09/2019	05/09/2019	05/09/2019	05/09/2019	05/09/2019
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	09/09/2019	09/09/2019	09/09/2019	09/09/2019	09/09/2019
Date analysed	-	09/09/2019	09/09/2019	09/09/2019	09/09/2019	09/09/2019
Total Phenolics (as Phenol)	mg/L	<0.05	<0.05	<0.05	<0.05	<0.05

HM in water - dissolved						
Our Reference		225631-1	225631-2	225631-3	225631-4	225631-5
Your Reference	UNITS	MWA	MWB	MWC	MWD	MWE
Date Sampled		05/09/2019	05/09/2019	05/09/2019	05/09/2019	05/09/2019
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	09/09/2019	09/09/2019	09/09/2019	09/09/2019	09/09/2019
Date analysed	-	09/09/2019	09/09/2019	09/09/2019	09/09/2019	09/09/2019
Manganese-Dissolved	μg/L	9	<5	1,100	190	31
Iron-Dissolved	μg/L	<10	<10	<10	890	<10

Miscellaneous Inorganics						
Our Reference		225631-1	225631-2	225631-3	225631-4	225631-5
Your Reference	UNITS	MWA	MWB	MWC	MWD	MWE
Date Sampled		05/09/2019	05/09/2019	05/09/2019	05/09/2019	05/09/2019
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	06/09/2019	06/09/2019	06/09/2019	06/09/2019	06/09/2019
Date analysed	-	06/09/2019	06/09/2019	06/09/2019	06/09/2019	06/09/2019
Total Organic Carbon	mg/L	6	7	18	280	5
рН	pH Units	6.6	7.0	7.0	7.8	7.6
Electrical Conductivity	μS/cm	18,000	14,000	13,000	14,000	3,500
Fluoride, F	mg/L	0.1	0.3	0.2	0.3	0.6
Nitrate as N in water	mg/L	0.59	0.71	1.8	<0.05	0.008
Ammonia as N in water	mg/L	<0.005	0.017	0.017	300	0.011

Ion Balance						
Our Reference		225631-1	225631-2	225631-3	225631-4	225631-5
Your Reference	UNITS	MWA	MWB	MWC	MWD	MWE
Date Sampled		05/09/2019	05/09/2019	05/09/2019	05/09/2019	05/09/2019
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	06/09/2019	06/09/2019	06/09/2019	10/09/2019	06/09/2019
Date analysed	-	06/09/2019	06/09/2019	06/09/2019	10/09/2019	06/09/2019
Calcium - Dissolved	mg/L	610	580	380	94	65
Potassium - Dissolved	mg/L	2.6	2.4	1.8	220	2.1
Sodium - Dissolved	mg/L	2,700	2,100	2,400	2,800	760
Magnesium - Dissolved	mg/L	1,200	720	570	230	69
Hydroxide Alkalinity (OH⁻) as CaCO₃	mg/L	<5	<5	<5	<5	<5
Bicarbonate Alkalinity as CaCO ₃	mg/L	490	400	670	2,500	630
Carbonate Alkalinity as CaCO ₃	mg/L	<5	<5	<5	<5	<5
Total Alkalinity as CaCO ₃	mg/L	490	400	670	2,500	630
Sulphate, SO4	mg/L	840	110	170	29	130
Chloride, Cl	mg/L	6,000	4,400	4,200	2,700	420
Ionic Balance	%	11	14	12	8.0	22

Method ID	Methodology Summary
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-002	Conductivity and Salinity - measured using a conductivity cell at 25°C in accordance with APHA latest edition 2510 and Rayment & Lyons.
Inorg-006	Alkalinity - determined titrimetrically in accordance with APHA latest edition, 2320-B.
Inorg-026	Fluoride determined by ion selective electrode (ISE) in accordance with APHA latest edition, 4500-F-C.
Inorg-031	Total Phenolics by segmented flow analyser (in line distillation with colourimetric finish). Solids are extracted in a caustic media prior to analysis.
Inorg-040	The concentrations of the major ions (mg/L) are converted to milliequivalents and summed. The ionic balance should be within +/- 10% ie total anions = total cations +/-10%.
Inorg-055	Nitrate - determined colourimetrically. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a water extraction.
Inorg-057	Ammonia - determined colourimetrically, based on APHA latest edition 4500-NH3 F. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a KCl extraction.
Inorg-079	TOC determined using a TOC analyser using the combustion method. Dissolved requires filtering prior to determination. Analysis using APHA latest edition 5310B.
Inorg-081	Anions - a range of Anions are determined by Ion Chromatography, in accordance with APHA latest edition, 4110-B. Waters samples are filtered on receipt prior to analysis. Alternatively determined by colourimetry/turbidity using Discrete Analyser.
Metals-020	Determination of various metals by ICP-AES.
Metals-022	Determination of various metals by ICP-MS.
Org-005	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.

QUA	ALITY CONTRO	L: OCP in	ı water			Du	ıplicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			09/09/2019	[NT]		[NT]	[NT]	09/09/2019	
Date analysed	-			10/09/2019	[NT]		[NT]	[NT]	10/09/2019	
нсв	μg/L	0.2	Org-005	<0.2	[NT]		[NT]	[NT]	[NT]	
alpha-BHC	μg/L	0.2	Org-005	<0.2	[NT]		[NT]	[NT]	85	
gamma-BHC	μg/L	0.2	Org-005	<0.2	[NT]		[NT]	[NT]	[NT]	
beta-BHC	μg/L	0.2	Org-005	<0.2	[NT]		[NT]	[NT]	90	
Heptachlor	μg/L	0.2	Org-005	<0.2	[NT]		[NT]	[NT]	90	
delta-BHC	μg/L	0.2	Org-005	<0.2	[NT]		[NT]	[NT]	[NT]	
Aldrin	μg/L	0.2	Org-005	<0.2	[NT]		[NT]	[NT]	90	
Heptachlor Epoxide	μg/L	0.2	Org-005	<0.2	[NT]		[NT]	[NT]	97	
gamma-Chlordane	μg/L	0.2	Org-005	<0.2	[NT]		[NT]	[NT]	[NT]	
alpha-Chlordane	μg/L	0.2	Org-005	<0.2	[NT]		[NT]	[NT]	[NT]	
Endosulfan I	μg/L	0.2	Org-005	<0.2	[NT]		[NT]	[NT]	[NT]	
pp-DDE	μg/L	0.2	Org-005	<0.2	[NT]		[NT]	[NT]	101	
Dieldrin	μg/L	0.2	Org-005	<0.2	[NT]		[NT]	[NT]	106	
Endrin	μg/L	0.2	Org-005	<0.2	[NT]		[NT]	[NT]	110	
pp-DDD	μg/L	0.2	Org-005	<0.2	[NT]		[NT]	[NT]	102	
Endosulfan II	μg/L	0.2	Org-005	<0.2	[NT]		[NT]	[NT]	[NT]	
pp-DDT	μg/L	0.2	Org-005	<0.2	[NT]		[NT]	[NT]	[NT]	
Endrin Aldehyde	μg/L	0.2	Org-005	<0.2	[NT]		[NT]	[NT]	[NT]	
Endosulfan Sulphate	μg/L	0.2	Org-005	<0.2	[NT]		[NT]	[NT]	99	
Methoxychlor	μg/L	0.2	Org-005	<0.2	[NT]		[NT]	[NT]	[NT]	
Surrogate TCMX	%		Org-005	92	[NT]		[NT]	[NT]	81	

QUALITY CO	NTROL: Tot	al Phenol	ics in Water			Du	plicate	Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			09/09/2019	1	09/09/2019	09/09/2019		09/09/2019	[NT]
Date analysed	-			09/09/2019	1	09/09/2019	09/09/2019		09/09/2019	[NT]
Total Phenolics (as Phenol)	mg/L	0.05	Inorg-031	<0.05	1	<0.05	<0.05	0	103	[NT]

Envirolab Reference: 225631 Revision No: R00

Page | 9 of 15

QUALITY CC	NTROL: HM	l in water	- dissolved			Duplicate			Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]	
Date prepared	-			09/09/2019	[NT]		[NT]	[NT]	09/09/2019		
Date analysed	-			09/09/2019	[NT]		[NT]	[NT]	09/09/2019		
Manganese-Dissolved	μg/L	5	Metals-022	<5	[NT]		[NT]	[NT]	93		
Iron-Dissolved	μg/L	10	Metals-022	<10	[NT]		[NT]	[NT]	101		

QUALITY COI	NTROL: Mis	cellaneou	s Inorganics			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date prepared	-			06/09/2019	1	06/09/2019	06/09/2019		06/09/2019	[NT]
Date analysed	-			06/09/2019	1	06/09/2019	06/09/2019		06/09/2019	[NT]
Total Organic Carbon	mg/L	1	Inorg-079	<1	1	6	[NT]		97	[NT]
рН	pH Units		Inorg-001	[NT]	1	6.6	[NT]		103	[NT]
Electrical Conductivity	μS/cm	1	Inorg-002	<1	1	18000	[NT]		102	[NT]
Fluoride, F	mg/L	0.1	Inorg-026	<0.1	1	0.1	[NT]		100	[NT]
Nitrate as N in water	mg/L	0.005	Inorg-055	<0.005	1	0.59	0.58	2	102	[NT]
Ammonia as N in water	mg/L	0.005	Inorg-057	<0.005	1	<0.005	<0.005	0	99	[NT]

QUALITY COI	NTROL: Mis	cellaneou	s Inorganics			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	4	06/09/2019	06/09/2019			
Date analysed	-			[NT]	4	06/09/2019	06/09/2019			
Total Organic Carbon	mg/L	1	Inorg-079	[NT]	4	280	[NT]			
рН	pH Units		Inorg-001	[NT]	4	7.8	7.8	0		
Electrical Conductivity	μS/cm	1	Inorg-002	[NT]	4	14000	14000	0		
Fluoride, F	mg/L	0.1	Inorg-026	[NT]	4	0.3	[NT]			
Nitrate as N in water	mg/L	0.005	Inorg-055	[NT]	4	<0.05	[NT]			
Ammonia as N in water	mg/L	0.005	Inorg-057	[NT]	4	300	[NT]			

QUALITY COI	NTROL: Mis	cellaneou	s Inorganics			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	5	06/09/2019	06/09/2019			[NT]
Date analysed	-			[NT]	5	06/09/2019	06/09/2019			[NT]
Total Organic Carbon	mg/L	1	Inorg-079	[NT]	5	5	5	0		[NT]
pH	pH Units		Inorg-001	[NT]	5	7.6	[NT]			[NT]
Electrical Conductivity	μS/cm	1	Inorg-002	[NT]	5	3500	[NT]			[NT]
Fluoride, F	mg/L	0.1	Inorg-026	[NT]	5	0.6	[NT]			[NT]
Nitrate as N in water	mg/L	0.005	Inorg-055	[NT]	5	0.008	[NT]			[NT]
Ammonia as N in water	mg/L	0.005	Inorg-057	[NT]	5	0.011	[NT]			[NT]

QUAL	ITY CONTRO	L: Ion Ba	lance			Du	plicate		Spike Red	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date prepared	-			06/09/2019	4	10/09/2019	10/09/2019		06/09/2019	
Date analysed	-			06/09/2019	4	10/09/2019	10/09/2019		06/09/2019	
Calcium - Dissolved	mg/L	0.5	Metals-020	<0.5	4	94	[NT]		96	
Potassium - Dissolved	mg/L	0.5	Metals-020	<0.5	4	220	[NT]		101	
Sodium - Dissolved	mg/L	0.5	Metals-020	<0.5	4	2800	[NT]		109	
Magnesium - Dissolved	mg/L	0.5	Metals-020	<0.5	4	230	[NT]		96	
Hydroxide Alkalinity (OH ⁻) as CaCO ₃	mg/L	5	Inorg-006	<5	4	<5	<5	0	[NT]	
Bicarbonate Alkalinity as CaCO ₃	mg/L	5	Inorg-006	<5	4	2500	2500	0	[NT]	
Carbonate Alkalinity as CaCO ₃	mg/L	5	Inorg-006	<5	4	<5	<5	0	[NT]	
Total Alkalinity as CaCO ₃	mg/L	5	Inorg-006	<5	4	2500	2500	0	100	
Sulphate, SO4	mg/L	1	Inorg-081	<1	4	29	[NT]		93	
Chloride, Cl	mg/L	1	Inorg-081	<1	4	2700	[NT]		93	
Ionic Balance	%		Inorg-040	[NT]	4	8.0	[NT]		[NT]	

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality	Contro	ol Definitions
	Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
D	uplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matr	rix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Lat	•	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surroga	te Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Envirolab Reference: 225631 Page | 14 of 15 Revision No: R00

Report Comments

Samples received in good order:

MISC_INORG: Nitrate as N PQL has been raised due to matrix interferences. Samples were diluted and reanalysed however same results were achieved.

The mass inbalance in may be caused by other ions that have not been measured.

Envirolab Reference: 225631 Page | 15 of 15 R00

Revision No:

,	ENVIROLA	}
	Client: Enga	ge Env
	Contact Per	son: St
	Project Mgr	Stepho
	Sampler: St	ephen (
	Address: 11	3 Reser
	- Phone:	0478
	Email:	į
	Envirolab Sample ID	Client II Infor
		М

CHAIN OF CUSTODY - Client

ENVÎROLAE		ENVIR	CHA OLAB GF		F CUS										12 Ashley 5 Ph 02 9910	5 - Envirolab Se St, Chatswood, 6200 / sydne RH/BTEX/Pb		om.au	_	
Client: Enga	ge Environmenta						umber / Site		title);						Combo2≎T	RH/BTEX/PAH, RH/BTEX/PAH,]
Contact Per	son: Stephen Cha	ilinor		_	1					19 - UHSC					Combo4=T	RH/BTEX/PAH,	/Met/Phon			
Project Mgr	Stephen				PO No.:											RH/BTEX/PAH,	/OC/PCB/Met /OC/OP/PCB/N	for		
Sampler: St	ephen Challinor				Envirolab Q	uote No. :									Combo7≃T	RH/BTEX/PAH,	OC/PCB/Met/	Phen		
Address: 11	3 Reservoir Rd, G	ilendale NS	N 2285		Date result:	s required:									Combo9=T	RH/BTEX/PAH, RH/BTEX/PAH,	/OC/OP/PCB/N /OC/PCB/Met/.	/let/Phen Phen/CN		ļ
						STANDARD									Combo10=	TRH/STEX/PAI	N/OC/OP/PCB/I	Met/Phen/CN		l
· .			-		Note: Inform	lab in advance	e if urgent tum	around is requ	ired - surchan	ges apply					Combol1=	TRH/BTEX/PAI TRH/BTEX/PAI	I/OC/PC8/12m	ret/Phen/CN :/TCLP-PAH ,6 Met		i
Phone:	0478 362 005	Mob:	04783	62005	Report form	iat: esdat / e	quis /											Met/TCLP-PAH ,6		
Email:			engage-es.co ge-es.com.au		Lab Comme	nts:	-								A Combo w	rith an "A" indic	ates Asbestos I	is also needed.		
	Sam	ple informat	tion								* - *	Tests Requir	ed		,				1	Comments
Envirolab Sample ID	Client Sample ID or Information	Depth	Date sampled	Type of sample	900	Cation suite: Ca, K, Na, Mg	Anions major: Chloride, Sulfate, alkalinity	phenols	Ammonla	iron	manganese	Fluoride	TOC	Nitrate	ü	푡				Provide as much information about the sample as you can
	MWA		5/9/19	Water	Х	X	X	X	X	X	X	X	X	Х	X	X	-	+		+
2	MWB		1 7	Water	X	X	Х	X	X	X	X	X	X	$\frac{\hat{x}}{x}$	X	$\frac{1}{x}$				
3	MWC			Water	X	Х	X	Х	X	X	X	X	X	X	$\frac{x}{x}$	$\frac{\hat{x}}{x}$		 		
4	MWD			Water	Х	X	x	Х	X	$\overline{\mathbf{x}}$	X	X	1 	X	X	$\frac{\hat{x}}{x}$		 		leachate
5	MWE			Water	X	X	x	X	Х	X	X	X	X	X	$\frac{1}{x}$	 	 			- Icaciate
																	1 -	1		
											<u> </u>		T		 			 		1
Relinquished Print Name: Date & Time	: 6/	phen Challi			Received by Print Name: Date & Time		ELS K.a 6.9			1394					Lab use only Samples Rev Temperatur	ceived: Cool		(circle one) (if applicable)	-	
Signature:					Signature:		12	5 C /							Transported					
					-									····w				v / Pink - Reta	in in Boo	k Page N

Envirolab Services 12 Ashley St Chatswood NSW 2067 Ph: (02) 9910 6200

22563

Date Received: 6.9.19 Time Received: 1344

Received by: KG Temp: Cool Ambient

Cooling: Ice/cepack

ATTACHMENT 2

CALIBRATION CERTIFICATE

Multi Parameter Water Meter

Instrument

YSI Quatro Pro Plus

Serial No.

18G103299

Air-Met Scientific Pty Ltd 1300 137 067

Item	Test	Pass	Comments
Battery	Charge Condition	1	
Dattery	Fuses	1	
	Capacity	✓	
	Oupuolty		No.
Switch/keypad	Operation	✓	
Display	Intensity	1	
Біоріцу	Operation (segments)	✓	
Grill Filter	Condition	✓	
Orm r mo.	Seal	✓	
PCB	Condition	1	
Connectors	Condition	1	
Sensor	1. pH	1	
0011001	2. mV	1	
	3. EC	1	
	4. D.O	1	
	5. Temp	1	
Alarms	Beeper		
Midillio	Settings		
Software	Version		
Data logger	Operation		
Download	Operation		
Other tests:			

Certificate of Calibration

This is to certify that the above instrument has been calibrated to the following specifications:

Sensor	Serial no	Standard Solutions	Certified	Solution Bottle Number	Instrument Reading
4 -11 10 00		pH 10.00		324189	pH 9.67
1. pH 10.00		pH 7.00		330737	pH 7.03
2. pH 7.00		pH 4.00		330734	pH 4.00
3. pH 4.00		231.8mV		325420/325421	231.9mV
4. mV 5. EC		2.76mS		329027	2.77mS
6. D.O		0.00ppm		329994	0.00ppm
7 Temp		20.7°C		MultiTherm	21.1°C

Calibrated by:

Sen philip

Calibration date:

3/09/2019

Next calibration due:

3/10/2019

ATTACHMENT 3

DATA LOG

ENGAGE EN	San							
		Sample ID	MWA	MWB	MWC	MWD	MWE	Site
SE	RVICES	LAB REF	225631	225631	225631	225631	225631	Criteria
Site: SCONE WASTE F.	Sampling Date	5/09/2019	5/09/2019	5/09/2019	5/09/2019	5/09/2019		
Monitoring Frequency	<u>Analytes</u>	<u>Units</u>						
Quarterly	Calcium	mg/L	610	580	380	94	65	NA
Quarterly	Alkalinity	mg/L	490	400	670	2500	630	NA
Quarterly	Chloride	mg/L	6000	4400	4200	2700	420	NA
Quarterly	Fluoride	mg/L	0.1	0.3	0.2	0.3	0.6	NA
Quarterly	Iron	mg/L	<0.010	< 0.010	< 0.010	0.89	< 0.010	0.3
Quarterly	Magnesium	mg/L	1200	720	570	230	69	NA
Quarterly	Manganese	mg/L	0.009	< 0.005	1.1	0.19	0.031	1.9
Quarterly	Organochlorine pesticides (OCP)	mg/L	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	0.00001*
Quarterly	Potassium	mg/L	2.6	2.4	1.8	220	2.1	NA
Quarterly	рН	pH units	6.6	7	7	7.8	7.6	6.5–8
Quarterly	Sodium	mg/L	2700	2100	2400	2800	760	NA
Quarterly	Ammonia	mg/L	<0.005	0.017	0.017	300	0.011	0.9
Quarterly	Nitrate	mg/L	0.59	0.71	1.8	< 0.05	0.008	0.7
Quarterly	Sulphate	mg/L	840	110	170	29	130	NA
Quarterly	Total organic carbon	mg/L	6	7	18	280	5	4
Quarterly	Total phenolics	mg/L	<0.05	<0.05	<0.05	<0.05	<0.05	0.32
Quarterly	Electrical conductivity (EC)	μS/cm	18000	14000	13000	14000	3500	NA

^{* -} trigger value

ATTACHMENT 4

FIELD DATA SHEETS

Project: FOT Sample ID: MW A Client: () (15)	
1 2 2 2 2 2	
Site Address: Scane Waste Park Date: 5.1.19	
Well Information	
Monument damaged: YES NO / N/A Well ID visible: YES/NO /	
Locked well casing: YES NO N/A Cap on PVC casing: YES NO /	
Cement footing damaged: YES / NO / N/A Water in monument casing: YES NO /	
Standing water, vegetation around monument: VES/NO/N/Aq (Internal obstruction in casing: YES NO)	
Well Damaged: YES /NO N/A Odours from groundwater: YES NO	N/A
Casing above ground: m agl Weather Conditions: Standing water level: 799 m bgl Temperature 15-20 □ 20-25 □	
Total well depth:	
Initial well volume: L	
Water level after purging:	
Volume of water purged: L Water level at time of sampling: mbgl Calm Slight breeze Moderate	
Water lever at time of sampling.	oreeze 🗖
, the paragraph of the	
Purging equipment: Sample equipment: Fine Showers Rain	
Sample equipment: Showers Rain Note: 50mm internal diameter pipe = 1.96 L/m.	
Water Quality Details:	
Time DO EC pH Redox Temp Salinity Comments	
am / pm (mg/L ⁻¹) (μS cm ⁻¹) (mV) (°C) (% Refract)	
11.35 1.77 19215 658 99,3 22.8 11.84	
18.38 1.02 19035 654 112.4 22.8 11.86	
11.39 1.09 18005 6.53 1178 226 11.85	
000 000 1170 176 1164	
11.41 0.83 [861 6,52 11.8 1220 11.84	
Water Quality and General Comments:	
is about - no seduct	

Project:	FOT	Sample ID: MWB	
Client:	OHSC	Sampler: SC	
Site Addres	is: Score weste facility	Date: 5.9.19	

XA7 11 × C										
Well Infor									<u></u>	
Monument da	0			ES/NO/N/A		ll ID visible:			YES / NO / N,	
Locked well ca	-			ES/NO/N/A					YES NO / N	
Cement footin				ES/NO/N/A		ter in monume		YES /NO / N		
Standing wate		around monu		ES/NO/N/A		ernal obstruction		g:	YES /NO/ N	
Well Damaged				ES (NO/ N/A		ours from groun			YES / NOY N	/A
Casing above g	ground:	1 000		m agl	Weat	her Conditio	ns:			
Standing wate				m bgl	Te	mperature	15-20 🗆	20-25		
Total well dep	th:		•••••	m bgl		:	25-30 🗖	>30	_	
Initial well vol	ume:			L					_	
Water level aft	er purging:			m bgl		Clear 🗆	Partly clo	udy 🖪	Overcast	
Volume of wat	er purged:			L						
Water level at	time of samp	ling:		m bgl		Calm 🗆	Slight bro	eeze 🛮	Moderate bre	eeze 🗆
Well purged d	ry:			YES / NO			Windy			
Purging equip	ment:	B. 10								
Sample equipr	nent:	Dur				Fine 🖸	Showers		Rain	
			Note:	50mm internal di	ameter pipe =	1.96 L/m.				
VATatam	Orralita F	_+_!1				PP f				
Time	Quality I	EC EC	pН	Redox	Temp	Salinity	Comr	nonte		
am / pm	(mg/L ⁻¹)	(μS cm ⁻¹)	pm	(mV)	(°C)	(% Refract)		nems		
			10-							
12.02		14536	6.87		21.8	909	-			
12.05	1.73	14280	6:3	1139	21.2	8.99				
12.08	1.68	1451	6.68	1139	20.9	897	·			
12.12	1.68	14160	669	113.6	20,9	8.99				
							-			
Water Q	uality an	d General	Comm	ents:	1					
	01-0	0.0	A	00-	1, 1					
	Clas-	- (W) Q	MONO,	- nose	me		-			-
										-

Client: OHS Sampler: Sampler: Stream Sampler: Stream Sampler: Stream Sampler: Stream Sampler: Stream	Project:	Fot				Sample	ID: MW	3		
Site Address: Sone (Lock) Fac (Lock) Date: Str. (1)										
Well Information Monument damaged: Locked well casing: YES /WO/N/A Cap on PVC casing: YES /WO/N/A Cap on PVC casing: YES /WO/N/A Standing water, vegetation around monument: Well Damaged: Standing water, vegetation around monument: Well Damaged: Standing water, vegetation around monument: Well Damaged: No/N/A Water in monument casing: YES /WO/N/A Water in monument casing: Well purged dost in casing: Weather conditions: Intitial well volume: Water evel after purging: m bgl Clear Partly cloudy Overcast Wolume of water purged: Moderate breeze Well purged dry: YES /NO Windy Purging equipment: Note: 50mm internal diameter place = 1.96 L/m. Water Quality Details: Time DO EC pH Redox Temp Salinity Comments (% Retrict) (% Re				o C.	1-1	+	= KA/10	7		
Monument damaged: Locked well casing: YES MO / N/A Locked well casing: YES MO / N/A Cap on PYC casing: YES MO / N/A Standing water, vegetation around monument: YES MO / N/A Standing water, vegetation around monument: YES MO / N/A Well Davisible: YES MO / N/A Cap on PYC casing: YES MO / N/A YES / MO / N/A Well Davisible: YES MO / N/A Standing water, vegetation around monument: YES / N/A Well Davisible: YES MO / N/A Cap on PYC casing: YES / MO / N/A YES / MO / N/A Well Davisible: YES / MO / N/A YES / MO / N/A Well Davisible: YES / MO / N/A YES / MO / N/A Well Davisible: Weather Nouthing in casing: YES / MO / N/A Well Davisible: Weather Nouthing in casing: YES / MO / N/A Well Davisible: Weather nonument casing: YES / MO / N/A Well Davisible: YES / MO / N/A Well Davisible: Weather nonument casing: YES / MO / N/A Weather Conditions: Temperature 15-20 □ 20-25 □ Partly cloudy I Overcast Overcast Volume of water purged: Locked Partly cloudy I Overcast Water evel at time of sampling: m bgl Clear □ Partly cloudy I Overcast Windy □ Windy □ Note: 50mm internal diameter pipe = 1.96 Um. Water Quality Details: Time DO EC pH Redox Temp Salinity (°C) (% Refract) Note: 50mm internal diameter pipe = 1.96 Um. Water Quality and General Comments: (mV) (°C) (% Refract) Well Davis form groundwater. YES / MO / N/A Wester Quality and General Comments: Water Quality and General Comments: Water Quality and General Comments:	Site Addres	33.	a way	- Tae	ling	Dute.	7//	1		
Locked well casing: Cement footing damaged: Standing water, vegetation around monument: Well Damaged: Casing above ground: Casing above groundwater: Weather Conditions: Temperature 15-20 20-25										
Locked well casing: Cement footing damaged: Standing water, vegetation around monument: Well Damaged: Standing water vegetation around monument: Well Damaged: Casing above ground: Total well depth: Initial well volume: Water evel after purging: Well purged dry: Water locked well casing: Weather Conditions: Temperature 15-20 20-25 00 NO/N/A Water Rounditions: Temperature 15-30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0										
Cement footing damaged: Standing water, vegetation around monument: VES (NO) N/A VALUE of Molecular transfer o				YE	/ _					
Standing water, vegetation around monument: Well Damaged: O.O Standing water level: Total well depth: Initial well volume: Water level after purging: Well purged dry: Purging equipment: Sample equipment: Sample equipment: Sample O.O EC pH Redox Temp Salinity Water Quality Details: Time DO EC pH Redox Temp Salinity (my) ("C) ("A. Refract) Somments Water Voluments Water Quality and General Comments: Water Quality and General Comments: Water Quality and General Comments:										
Well Damaged: Casing above ground: Standing water level: Total well depth: Total well										
Casing above ground:	Standing water	r, vegetation a	round monum	ent: YF	S/NO/N/A	Inte	hal obstruction	n in casing:	2	
Casing above grounds and the second standing water level: mbg Temperature 15-20 20-25 Total well depth:			- 01	O CY					YES/NO/N/A	
Total well depth:	Casing above g	ground:							_	1
Initial well volume:	Standing wate	r level:	1406		-	Ter		5		
Water level after purging:	12170 0 50.1						2	5-30 🗷 >30 🛚		
Volume of water purged:								/	/	_
Water level at time of sampling:					-		Clear 🗆	Partly cloudy	Overcast	
Well purged dry: Purging equipment: Sample equipment: Note: 50mm internal diameter pipe = 1.96 L/m. Water Quality Details: Time DO EC pH Redox (mV) (°C) (% Refract) 1.30 0.79 147869 7.33 -25.3 27.7 6.14								/		
Purging equipment: Sample equipment: Note: 50mm internal diameter plpe = 1.96 L/m. Water Quality Details: Time DO EC pH Redox Temp (°C) (% Refract) 1.30 O.29 14869 7.33 -25.3 27.7 8.14 Water Quality and General Comments: Water Quality and General Comments:	Water level at	time of sampl	ing:						Moderate breeze	
Sample equipment: Note: 50mm internal diameter pipe = 1.96 l/m.	Well purged di	ry:	7 7		YES / NO			Windy		
Note: 50mm internal diameter pipe = 1.96 L/m. Water Quality Details: Time DO EC pH Redox (mV) (°C) (% Refract) 1.30 O.29 14869 7.33 -25.3 27.7 8.14 Water Quality and General Comments: Queen Suspended Sudaward	Purging equip	ment:	Sula							
Water Quality Details: Time DO (mg/L¹) (µS cm⁻¹) (mV) (°C) (% Refract) 1.30 O.20 (4869) 7.33 -25.3 27.7 6.14 Water Quality and General Comments: Agen Sugarda solution	Sample equipr	nent:				Andrew House		Showers	Rain	
Time am/pm DO (mg/L¹) (µS cm¹) pH Redox (mV) (°C) (%Refract) (%Refract)				Note:	50mm internal dia	ameter pipe =	1.96 L/m.			
Time am/pm DO (mg/L¹) (µS cm¹) pH Redox (mV) (°C) (%Refract) (%Refract)	Water	Quality D	etails:							
Water Quality and General Comments: Area Sugard Solved				pН	Redox	Temp	Salinity	Comments		
Water Quality and General Comments: Agen Suspend Subject	am / pm	(mg/L ⁻¹)		_			` .			
areen susperold sedereit	1.30	0.29	14869	7.33	-15.5	27.7	8.14			
ageen susperold sedereit										
ageen susperold sedereit										
ageen susperold sedereit										
areen susperold sedereit										
areen susperold sedereit										
areen susperold sedereit										
areen susperold sedereit										
areen susperold sedereit										
ageen susperold sedereit										
areen susperold sedereit						_				
areen susperold sedereit										
Odoor very trong	Water (Quality an	d General	old s	Edwer	<i>ţ</i> .				

Project:	BO4	Sample ID: MWC	
Client:	UH8C	Sampler:	
Site Address:	some whole tacilly	Date: 5/4/19	

Well Information			
Monument damaged:	YES NO / N/A	Well ID visible:	ES NO / N/A
Locked well casing:	YES /NO / N/A	Cap on PVC casing:	YES/ NO / N/A
Cement footing damaged:	YES NO / N/A	Water in monument casing:	YES /NO / N/A
Standing water, vegetation around monument:	YES / NO/ N/A	Internal obstruction in casing:	YES / NO/ N/A
Well Damaged:	YES /NO/ N/A	Odours from groundwater:	YES / NO/ N/A
Casing above ground:	m agl	Weather Conditions:	
Standing water level: 7.37	. m bgl	Temperature 15-20 □ 20-25	
Total well depth:	m bgl	25-30 ☑ >30	
Initial well volume:	. L		,
Water level after purging:	. m bgl	Clear □ Partly cloudy 🗹	Overcast □
Volume of water purged:	. L		,
Water level at time of sampling:	m bgl	Calm □ Slight breeze ☑	Moderate breeze □
Well purged dry:	YES / NO	Windy □	
Purging equipment:		/	
Sample equipment:		Fine Showers	Rain 🗆

Note: 50mm internal diameter pipe = 1.96 L/m.

Water Quality Details:

Time	DO	EC	pН	Redox	Temp	Salinity	Comments
am / pm	(mg/L ⁻¹)	(μS cm ⁻¹)		(mV)	(°C)	(% Refract)	
12,35	2.11	13476	66	103.9	21.5	8.21	
12,40	1.42	13199	6.61	106.3	21.5	8.18	
12.42	1.36	13705	6.57	105.2	21.5	8.22	
12.46	1.44	13220	6.58	106.1	21.5	8.18	
			_				

Water Quality	and General Comments:	
Brower	sugarded sedure &	
	V	

Vell Inforn fonument dan ocked well cas	nation	ne Was	e fact	. (.	Sample	er: 5.C						
Vell Inforn fonument dan ocked well cas	nation	ne Ward	e faci	1.								
onument dar ocked well cas				Site Address: Scane Waste facility				Date: 5/4/				
onument dar ocked well cas				7		Ch.						
onument dar ocked well cas												
ocked well cas	naged:			200								
				ES /NO/ N/A		Well ID visible: YES/NO						
ement footing	<u> </u>			ES/NO/N/A	0 -							
••	Cement footing damaged: YES// NO / N/A			Water in monument casing: YES /NO / N/A								
		around monu		ES /NO/ N/A								
ell Damaged:				ES /NO/N/A		ours from groun		YES / NØ / N/A	L.			
ising above g	round:	A 90		m agl	Weather Conditions:							
		5.90		m bgl	Temperature 15-20 20-25							
•		•••••		m bgl		2	5-30 🗹 >30	ш				
		••••••		L		ci =			_			
				m bgl		Clear 🗆	Partly cloudy	Overcast				
		1:		L 1 -1		Colon II	Cli-la bassas D	Madanata kana				
		ling:		m bgl		Calm □		Moderate breez	ze 🗆			
ell purged dr	-	0 11		YES / NO			Windy					
urging equipn ample equipm		Sailer				Fine	Showers	Rain				
mpie equipii	ient.		Note	50mm internal dia	meter pipe =		Showers 🗀	Kani				
	Quality I		,			pet						
Time	DO	EC	pН	Redox	Temp	Salmity	Comments					
am/pm	(mg/L ⁻¹)	(μS cm ⁻¹)		(mV)	(°C)	(% Refract)						
1.05	1.30	3338	710	259	21.7	(.86						
1.09	0,48	3223	7.06	33.1	21.3	(82						
1.11	0.57	220	7.08	29.9	21.4	1.84						
					01.	1.0						
							-					
							-					
												
		4				4						
Water Q	uality an	d General	Comm	ents:								
1	lear M	2 soloni	· Les									
	COU , V	8000	~						-			
-	******								-			